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1 Solve the inequality 2 − 3x < |x − 3|. [4]

2 Solve the equation 3x+2 = 3x + 32, giving your answer correct to 3 significant figures. [4]

3 The sequence of values given by the iterative formula

x
n+1

= 3x
n

4
+ 15

x3
n

,

with initial value x
1
= 3, converges to α.

(i) Use this iterative formula to find α correct to 2 decimal places, giving the result of each iteration

to 4 decimal places. [3]

(ii) State an equation satisfied by α and hence find the exact value of α. [2]

4 A curve has equation y = e−3x tan x. Find the x-coordinates of the stationary points on the curve in the

interval −1

2
π < x < 1

2
π. Give your answers correct to 3 decimal places. [6]

5 (i) Prove the identity cos 4θ − 4 cos 2θ + 3 ≡ 8 sin4
θ . [4]

(ii) Using this result find, in simplified form, the exact value of

ã
1

3
π

1

6
π

sin4
θ dθ . [4]

6 With respect to the origin O, the points A, B and C have position vectors given by

−−→
OA = i − k,

−−→
OB = 3i + 2j − 3k and

−−→
OC = 4i − 3j + 2k.

The mid-point of AB is M. The point N lies on AC between A and C and is such that AN = 2NC.

(i) Find a vector equation of the line MN. [4]

(ii) It is given that MN intersects BC at the point P. Find the position vector of P. [4]

7 The complex number −2 + i is denoted by u.

(i) Given that u is a root of the equation x3 − 11x − k = 0, where k is real, find the value of k. [3]

(ii) Write down the other complex root of this equation. [1]

(iii) Find the modulus and argument of u. [2]

(iv) Sketch an Argand diagram showing the point representing u. Shade the region whose points

represent the complex numbers ß satisfying both the inequalities

|ß| < |ß − 2| and 0 < arg(ß − u) < 1

4
π. [4]
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8 (i) Express
5x + 3

(x + 1)2(3x + 2) in partial fractions. [5]

(ii) Hence obtain the expansion of
5x + 3

(x + 1)2(3x + 2) in ascending powers of x, up to and including the

term in x2, simplifying the coefficients. [5]

9

O

y

M

x
4

A

The diagram shows the curve y = ln x√
x

and its maximum point M. The curve cuts the x-axis at the

point A.

(i) State the coordinates of A. [1]

(ii) Find the exact value of the x-coordinate of M. [4]

(iii) Using integration by parts, show that the area of the shaded region bounded by the curve, the

x-axis and the line x = 4 is equal to 8 ln 2 − 4. [5]

10 In a model of the expansion of a sphere of radius r cm, it is assumed that, at time t seconds after the

start, the rate of increase of the surface area of the sphere is proportional to its volume. When t = 0,

r = 5 and
dr

dt
= 2.

(i) Show that r satisfies the differential equation

dr

dt
= 0.08r

2
. [4]

[The surface area A and volume V of a sphere of radius r are given by the formulae A = 4πr2,

V = 4

3
πr3.]

(ii) Solve this differential equation, obtaining an expression for r in terms of t. [5]

(iii) Deduce from your answer to part (ii) the set of values that t can take, according to this model.

[1]
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