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1 Solve the equation

ln(x + 2) = 2 + ln x,

giving your answer correct to 3 decimal places. [3]

2 Expand (1 + x) √(1 − 2x) in ascending powers of x, up to and including the term in x2, simplifying the
coefficients. [4]

3 The curve y = ex

cos x
, for −1

2
π < x < 1

2
π, has one stationary point. Find the x-coordinate of this point.

[5]

4 The parametric equations of a curve are

x = a(2θ − sin 2θ), y = a(1 − cos 2θ).
Show that

dy
dx

= cot θ . [5]

5 The polynomial 4x3 − 4x2 + 3x + a, where a is a constant, is denoted by p(x). It is given that p(x) is
divisible by 2x2 − 3x + 3.

(i) Find the value of a. [3]

(ii) When a has this value, solve the inequality p(x) < 0, justifying your answer. [3]

6 (i) Express 5 sin x + 12 cos x in the form R sin(x + α), where R > 0 and 0◦ < α < 90◦, giving the
value of α correct to 2 decimal places. [3]

(ii) Hence solve the equation

5 sin 2θ + 12 cos 2θ = 11,

giving all solutions in the interval 0◦ < θ < 180◦. [5]

7 Two planes have equations 2x − y − 3� = 7 and x + 2y + 2� = 0.

(i) Find the acute angle between the planes. [4]

(ii) Find a vector equation for their line of intersection. [6]
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8

An underground storage tank is being filled with liquid as shown in the diagram. Initially the tank is
empty. At time t hours after filling begins, the volume of liquid is V m3 and the depth of liquid is h m.
It is given that V = 4

3
h3.

The liquid is poured in at a rate of 20 m3 per hour, but owing to leakage, liquid is lost at a rate

proportional to h2. When h = 1,
dh
dt

= 4.95.

(i) Show that h satisfies the differential equation

dh
dt

= 5

h2
− 1

20
. [4]

(ii) Verify that
20h2

100 − h2
≡ −20 + 2000(10 − h)(10 + h) . [1]

(iii) Hence solve the differential equation in part (i), obtaining an expression for t in terms of h. [5]

9 The constant a is such that � a

0
xe

1
2
x
dx = 6.

(i) Show that a satisfies the equation

x = 2 + e
−1

2
x
. [5]

(ii) By sketching a suitable pair of graphs, show that this equation has only one root. [2]

(iii) Verify by calculation that this root lies between 2 and 2.5. [2]

(iv) Use an iterative formula based on the equation in part (i) to calculate the value of a correct to
2 decimal places. Give the result of each iteration to 4 decimal places. [3]
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10 The complex number w is given by w = −1
2
+ i

√
3

2
.

(i) Find the modulus and argument of w. [2]

(ii) The complex number � has modulus R and argument θ , where −1
3
π < θ < 1

3
π. State the modulus

and argument of w� and the modulus and argument of
�
w

. [4]

(iii) Hence explain why, in an Argand diagram, the points representing �, w� and
�
w

are the vertices

of an equilateral triangle. [2]

(iv) In an Argand diagram, the vertices of an equilateral triangle lie on a circle with centre at the
origin. One of the vertices represents the complex number 4 + 2i. Find the complex numbers
represented by the other two vertices. Give your answers in the form x + iy, where x and y are
real and exact. [4]
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