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1 Expand
1(2 + x)3

in ascending powers of x, up to and including the term in x2, simplifying the

coefficients. [4]

2 Solve the equation

ln(1 + x) = 1 + ln x,

giving your answer correct to 2 significant figures. [4]

3 The polynomial 2x3 + ax2 − 4 is denoted by p(x). It is given that (x − 2) is a factor of p(x).
(i) Find the value of a. [2]

When a has this value,

(ii) factorise p(x), [2]

(iii) solve the inequality p(x) > 0, justifying your answer. [2]

4 (i) Show that the equation

tan(45◦ + x) = 2 tan(45◦ − x)
can be written in the form

tan2 x − 6 tan x + 1 = 0. [4]
(ii) Hence solve the equation tan(45◦ + x) = 2 tan(45◦ − x), for 0◦ < x < 90◦. [3]

5

The diagram shows a sector OAB of a circle with centre O and radius r. The angle AOB is α radians,
where 0 < α < 1

2
π. The point N on OA is such that BN is perpendicular to OA. The area of the

triangle ONB is half the area of the sector OAB.

(i) Show that α satisfies the equation sin 2x = x. [3]

(ii) By sketching a suitable pair of graphs, show that this equation has exactly one root in the interval
0 < x < 1

2
π. [2]

(iii) Use the iterative formula

x
n+1

= sin(2x
n
),

with initial value x1 = 1, to find α correct to 2 decimal places, showing the result of each iteration.
[3]
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6 The complex numbers 1 + 3i and 4 + 2i are denoted by u and v respectively.

(i) Find, in the form x + iy, where x and y are real, the complex numbers u − v and
u
v

. [3]

(ii) State the argument of
u
v

. [1]

In an Argand diagram, with origin O, the points A, B and C represent the numbers u, v and u − v
respectively.

(iii) State fully the geometrical relationship between OC and BA. [2]

(iv) Prove that angle AOB = 1
4
π radians. [2]

7

The diagram shows the curve y = x2e
−1

2
x
.

(i) Find the x-coordinate of M, the maximum point of the curve. [4]

(ii) Find the area of the shaded region enclosed by the curve, the x-axis and the line x = 1, giving
your answer in terms of e. [5]

8 An appropriate form for expressing
3x(x + 1)(x − 2) in partial fractions is

A
x + 1

+ B
x − 2

,

where A and B are constants.

(a) Without evaluating any constants, state appropriate forms for expressing the following in partial
fractions:

(i)
4x(x + 4)(x2 + 3) , [1]

(ii)
2x + 1(x − 2)(x + 2)2

. [2]

(b) Show that � 4

3

3x(x + 1)(x − 2) dx = ln 5. [6]
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9 The lines l and m have vector equations

r = 2i − j + 4k + s(i + j − k) and r = −2i + 2j + k + t(−2i + j + k)
respectively.

(i) Show that l and m do not intersect. [4]

The point P lies on l and the point Q has position vector 2i − k.

(ii) Given that the line PQ is perpendicular to l, find the position vector of P. [4]

(iii) Verify that Q lies on m and that PQ is perpendicular to m. [2]

10 A rectangular reservoir has a horizontal base of area 1000 m2. At time t = 0, it is empty and water
begins to flow into it at a constant rate of 30 m3 s−1. At the same time, water begins to flow out at a

rate proportional to
√

h, where h m is the depth of the water at time t s. When h = 1,
dh
dt

= 0.02.

(i) Show that h satisfies the differential equation

dh
dt

= 0.01(3 − √
h). [3]

It is given that, after making the substitution x = 3 − √
h, the equation in part (i) becomes

(x − 3)dx
dt

= 0.005x.

(ii) Using the fact that x = 3 when t = 0, solve this differential equation, obtaining an expression for
t in terms of x. [5]

(iii) Find the time at which the depth of water reaches 4 m. [2]
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