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1 Expand (2 + 3x)−2 in ascending powers of x, up to and including the term in x2, simplifying the
coefficients. [4]

2 The polynomial x3 − 2x + a, where a is a constant, is denoted by p(x). It is given that (x + 2) is a
factor of p(x).

(i) Find the value of a. [2]

(ii) When a has this value, find the quadratic factor of p(x). [2]

3 The equation of a curve is y = x sin 2x, where x is in radians. Find the equation of the tangent to the
curve at the point where x = 1

4
π. [4]

4 Using the substitution u = 3x, or otherwise, solve, correct to 3 significant figures, the equation

3x = 2 + 3−x. [6]

5 (i) Express cos θ + (√3) sin θ in the form R cos(θ − α), where R > 0 and 0 < α < 1
2
π, giving the

exact values of R and α. [3]

(ii) Hence show that �
1
2
π

0

1

(cos θ + (√3) sin θ)2 dθ = 1√
3

. [4]

6

The diagram shows a sector AOB of a circle with centre O and radius r. The angle AOB is α radians,
where 0 < α < π. The area of triangle AOB is half the area of the sector.

(i) Show that α satisfies the equation

x = 2 sin x. [2]
(ii) Verify by calculation that α lies between 1

2
π and 2

3
π. [2]

(iii) Show that, if a sequence of values given by the iterative formula

xn+1 = 1
3
(xn + 4 sin xn)

converges, then it converges to a root of the equation in part (i). [2]

(iv) Use this iterative formula, with initial value x1 = 1.8, to find α correct to 2 decimal places. Give
the result of each iteration to 4 decimal places. [3]
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7 Let I = � 4

1

1
x(4 − √

x) dx.

(i) Use the substitution u = √
x to show that I = � 2

1

2
u(4 − u) du. [3]

(ii) Hence show that I = 1
2

ln 3. [6]

8 The complex number
2−1 + i

is denoted by u.

(i) Find the modulus and argument of u and u2. [6]

(ii) Sketch an Argand diagram showing the points representing the complex numbers u and u2. Shade
the region whose points represent the complex numbers �which satisfy both the inequalities |�| < 2
and ∣∣� − u2 ∣∣ < |� − u|. [4]

9

The diagram shows a set of rectangular axes Ox, Oy and O�, and three points A, B and C with position

vectors
−−→
OA = ( 2

0
0
),

−−→
OB = ( 1

2
0
) and

−−→
OC = ( 1

1
2
).

(i) Find the equation of the plane ABC, giving your answer in the form ax + by + c� = d. [6]

(ii) Calculate the acute angle between the planes ABC and OAB. [4]
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10 A model for the height, h metres, of a certain type of tree at time t years after being planted assumes

that, while the tree is growing, the rate of increase in height is proportional to (9 − h)1
3 . It is given that,

when t = 0, h = 1 and
dh
dt

= 0.2.

(i) Show that h and t satisfy the differential equation

dh
dt

= 0.1(9 − h)1
3. [2]

(ii) Solve this differential equation, and obtain an expression for h in terms of t. [7]

(iii) Find the maximum height of the tree and the time taken to reach this height after planting. [2]

(iv) Calculate the time taken to reach half the maximum height. [1]
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