MATHEMATICS

9709/33 October/November 2016

Paper 3 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 \circledast IGCSE is the registered trademark of Cambridge International Examinations.

PMT

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2016	9709	33

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ↓[↑] implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2016	9709	33

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through ↓" " marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	A Mark Scheme Sy	Syllabus	Paper	
	Cambridge International A Level – October/November 2016	9709	33	
1	Use law of the logarithm of a quotient	M1		
	Remove logarithms and obtain a correct equation, e.g. $e^{z} = \frac{y+2}{y+1}$	A1		
	Obtain answer $y = \frac{2 - e^z}{e^z - 1}$, or equivalent	A1		[3]
2	Use correct quotient or product rule Obtain correct derivative in any form	M1 A1		
	Use Pythagoras to simplify the derivative to $\frac{1}{1 + \cos x}$, or equivalent	A1		5.43
	Justify the given statement, $-1 < \cos x < 1$ statement, or equivalent	A1		[4]
3	Use the tan 2A formula to obtain an equation in tan θ only Obtain a correct horizontal equation	M1 A1		
	Obtain a correct horizontal equation Rearrange equation as a quadratic in $\tan \theta$, e.g. $3\tan^2 \theta + 2\tan \theta - 1 = 0$	A1 A1		
	Solve for θ (usual requirements for solution of quadratic)	M1		
	Obtain answer, e.g. 18.4° Obtain second answer, e.g. 135°, and no others in the given interval	A1 A1		[6]
4 (i)	Commence division by $x^2 - x + 2$ and reach a partial quotient $4x^2 + kx$ Obtain quotient $4x^2 + 4x + a - 4$ or $4x^2 + 4x + b/2$	M1 A1		
	Equate x or constant term to zero and solve for a or b	M1		
	Obtain $a = 1$	A1		[5]
	Obtain $b = -6$	A1		[5]
(ii)	Show that $x^2 - x + 2 = 0$ has no real roots	B 1		
	Obtain roots $\frac{1}{2}$ and $-\frac{3}{2}$ from $4x^2 + 4x - 3 = 0$	B1		[2]
5 (i)	State equation $\frac{dy}{dx} = \frac{1}{2}xy$	B1		[1]
(ii)	Separate variables correctly and attempts to integrate one side of equation	M1		
	Obtain terms of the form $a \ln y$ and bx^2	A1		
	Use $x = 0$ and $y = 2$ to evaluate a constant, or as limits, in expression containing <i>a</i> ln y or bx^2	ng M1		
	Obtain correct solution in any form, e.g. $\ln y = \frac{1}{4}x^2 + \ln 2$	A1		
	Obtain correct expression for y, e.g. $y = 2e^{\frac{1}{4}x^2}$	A1		[5]
(iii)	Show correct sketch for $x \ge 0$. Needs through (0, 2) and rapidly increasing positive gradient.	B1		[1]

	Page 5	Mark Scheme	Syllabus	Paper	
		Cambridge International A Level – October/November 2016	9709	33	
6	(i)	State or imply $du = \frac{1}{2\sqrt{x}} dx$	B1		
		Substitute for x and dx throughout	M1		
		Justify the change in limits and obtain the given answer	A1		[3]
	(ii)	Convert integrand into the form $A + \frac{B}{u+1}$ Obtain integrand $A = 1, B = -2$	M1 ² A1	ķ	
		Integrate and obtain $u - 2\ln(u+1)$		[^] + A1 [√]	
		Substitute limits correctly in an integral containing terms <i>au</i> and $b\ln(u + 1)$,			
		where $ab \neq 0$	DM	1	
		Obtain the given answer following full and correct working	A1		[6]
		[The f.t. is on A and B.]			
7	(i)	State modulus $2\sqrt{2}$, or equivalent	B1		
<i>'</i>	(1)	State argument $-\frac{1}{3}\pi$ (or -60°)	B1		[2]
					r_1
	(ii) (a)	State answer $3\sqrt{2} + \sqrt{6}$ i	B1		
	(b)	<i>EITHER:</i> Substitute for <i>z</i> and multiply numerator and denominator by			
		conjugate of iz	M1		
		Simplify the numerator to $4\sqrt{3} + 4i$ or the denominator to 8	A1		
		Obtain final answer $\frac{1}{2}\sqrt{3} + \frac{1}{2}i$	A1		
		<i>OR</i> : Substitute for <i>z</i> , obtain two equations in <i>x</i> and <i>y</i> and solve for <i>x</i> of	or		
		for y	M1		
		Obtain $x = \frac{1}{2}\sqrt{3}$ or $y = \frac{1}{2}$	A1		
		Obtain final answer $\frac{1}{2}\sqrt{3} + \frac{1}{2}i$	A1		[4]
	(iii)	Show points <i>A</i> and <i>B</i> in relatively correct positions Carry out a complete method for finding angle <i>AOB</i> , e.g. calculate the	B1		
		argument of $\frac{z^*}{z}$	M1		
		12			
		Obtain the given answer	A1		[3]
8	(i)	State or imply the form $\frac{A}{x+2} + \frac{Bx+C}{x^2+4}$	B1		
		Use a correct method to determine a constant	M1		
		Obtain one of $A = 2$, $B = 1$, $C = -1$	A1		
		Obtain a second value Obtain a third value	A1 A1		[5]
					[-]

Page 6	Mark Scheme	Syllabus	Paper	7
	Cambridge International A Level – October/November 2016	9709	33	
(ii)	Use correct method to find the first two terms of the expansion of $(x+2)^{-1}$, $(1+\frac{1}{2}x)^{-1}$, $(4+x^2)^{-1}$ or $(1+\frac{1}{4}x^2)^{-1}$	M1		
	Obtain correct unsimplified expansions up to the term in x^2 of each partial fraction Multiply out fully by $Bx + C$, where $BC \neq 0$	A1√ M1	+ A1 √ [^]	
	Obtain final answer $\frac{3}{4} - \frac{1}{4}x + \frac{5}{16}x^2$, or equivalent	A1		[5]
	Symbolic binomial coefficients, e.g. $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ are not sufficient for the M1. The	e f.t.		
	is on <i>A</i> , <i>B</i> , <i>C</i> .] [In the case of an attempt to expand $(3x^2 + x + 6)(x + 2)^{-1}(x^2 + 4)^{-1}$, give M1A1A1 for the expansions, M1 for multiplying out fully, and A1 for the fit answer.]	nal		
9 (i)	Differentiate both equations and equate derivatives	M1*	:	
	Obtain equation $\cos a - a \sin a = -\frac{k}{a^2}$	A1 -	- A1	
	State $a \cos a = \frac{k}{a}$ and eliminate k	DM	1	
	Obtain the given answer showing sufficient working	A1		[5]
(ii)	Show clearly correct use of the iterative formula at least once Obtain answer 1.077 Show sufficient iterations to 5 d.p. to justify 1.077 to 3 d.p., or show there is	a M1 A1		
	sign change in the interval (1.0765, 1.0775)	A1		[3]
(iii)	Use a correct method to determine k Obtain answer $k = 0.55$	M1 A1		[2]
10 (i)	Express general point of <i>l</i> in component form e.g. $(1+2\lambda, 2-\lambda, 1+\lambda)$ Using the correct process for the modulus form an equation in λ	B1 M1*	:	
	Reduce the equation to a quadratic, e.g. $6\lambda^2 + 2\lambda - 4 = 0$	A1 DM		
	Solve for λ (usual requirements for solution of a quadratic) Obtain final answers $-\mathbf{i} + 3\mathbf{j}$ and $\frac{7}{3}\mathbf{i} + \frac{4}{3}\mathbf{j} + \frac{5}{3}\mathbf{k}$	A1	I	[5]
(ii)	Using the correct process, find the scalar product of a direction vector for l a normal for p Using the correct process for the moduli, divide the scalar product by the pro-	M1		
	of the moduli and equate the result to $\frac{2}{3}$	M1		
	State a correct equation in any form, e.g. $\frac{2a-1+1}{\sqrt{a^2+1+1}} = \pm \frac{2a}{\sqrt{a^2+1+1}} = \pm \frac{2a}{\sqrt{a^2+1+1}}$	$\frac{2}{3}$ A1		
	Solve for a^2 Obtain answer $a = \pm 2$	M1 A1		[5]