UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

9709 MATHEMATICS

9709/31

Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	31

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	31

PMT

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{"}$ marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4	Mark Scheme: Teachers' version Syllabu	is Papei	r
		GCE AS/A LEVEL – October/November 2011 9709	31	
1	Solve a 3-tern Obtain simpli	$e^{2x} - e^x - 6 = 0$, or $u^2 - u - 6 = 0$, or equivalent in quadratic for e^x or for u fied solution $e^x = 3$ or $u = 3$ inswer $x = 1.10$ and no other	B1 M1 A1 A1	[4]
2	EITHER: Us	e chain rule	M1	
	ob	tain $\frac{dx}{dt} = 6 \sin t \cos t$, or equivalent	A1	
	ob	tain $\frac{dy}{dt} = -6\cos^2 t \sin t$, or equivalent	A1	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t}$	M1	
		ptain final answer $\frac{dy}{dx} = -\cos t$	A1	
	OR: Ex	press y in terms of x and use chain rule	M1	
	Ot	btain $\frac{dy}{dx} = k(2 - \frac{x}{3})^{\frac{1}{2}}$, or equivalent	A1	
		Detain $\frac{dy}{dx} = -(2 - \frac{x}{3})^{\frac{1}{2}}$, or equivalent	A1	
		press derivative in terms of t	M1	
	Oł	ptain final answer $\frac{dy}{dx} = -\cos t$	A1	[5]
3	<i>OR</i> : [SR: The	Attempt division by $x^2 - x + 1$ reaching a partial quotient of $x^2 + kx$ Obtain quotient $x^2 + 4x + 3$ Equate remainder of form lx to zero and solve for a , or equivalent Obtain answer $a = 1$ Substitute a complex zero of $x^2 - x + 1$ in $p(x)$ and equate to zero Obtain a correct equation in a in any unsimplified form Expand terms, use $i^2 = -1$ and solve for a Obtain answer $a = 1$ e first M1 is earned if inspection reaches an unknown factor $x^2 + Bx + c$ in B and/or C , or an unknown factor $Ax^2 + Bx + 3$ and an equation in A a	M1 $A1$ $M1$ $A1$ $M1$ $A1$ $M1$ $A1$ $C and an$	[4]
		nd M1 is only earned if use of the equation $a = B - C$ is seen or implied.		
		wer, e.g. $x = -3$ wer, e.g. $x = -1$ and no others	B1 B1	[2]
4	-	bles and attempt integration of at least one side $a(x + 1)$	M1 A1	
	Obtain term li Obtain term <i>k</i>	$\ln \sin 2\theta$, where $k = \pm 1, \pm 2$, or $\pm \frac{1}{2}$	M1	
		t term $\frac{1}{2} \ln \sin 2\theta$	A1	
		nstant, or use limits $\theta = \frac{1}{12}\pi$, $x = 0$ in a solution containing terms $a \ln(x)$	+ 1) and	
	$b \ln \sin 2\theta$		M1	
	Obtain solution	on in any form, e.g. $\ln(x+1) = \frac{1}{2} \ln \sin 2\theta - \frac{1}{2} \ln \frac{1}{2}$ (f.t. on $k = \pm 1, \pm 2$, or $\pm 1, \pm 2, \pm 1, \pm 2$, or $\pm 1, \pm 2, \pm 1, \pm 1$	$(\frac{1}{2})$ A1 $$	
	Deemensee	l obtain $x = \sqrt{2 \sin 2\theta} - 1$, or simple equivalent	A1	[7]

	Ра	ge 5	Mark Scheme: Teachers' version	Syllabus	Paper	r
			GCE AS/A LEVEL – October/November 2011	9709	31	
5	(i)		ognisable sketch of a relevant graph over the given interval e other relevant graph and justify the given statement		B1 B1	[2]
	(ii)	Consider	the sign of sec $x - (3 - \frac{1}{2}x^2)$ at $x = 1$ and $x = 1.4$, or equival	ent	M1	
		Complete	the argument with correct calculated values		A1	[2]
	(iii)	Convert t	he given equation to sec $x = 3 - \frac{1}{2}x^2$ or work <i>vice versa</i>		B1	[1]
	(iv)	Obtain fin	rect iterative formula correctly at least once nal answer 1.13 ficient iterations to 4 d.p. to justify 1.13 to 2 d.p., or show the	pere is a sign chang	M1 A1	
		in the inte	erval (1.125, 1.135) cessive evaluation of the iterative function with $x = 1, 2,$	0 0	A1	[3]
6	(i)	State or in	mply $R = \sqrt{10}$		B1	
			$\hat{a} = \frac{1}{2} \sum_{\alpha \in \mathcal{A}} \frac{1}{\alpha} \sum_{\alpha \in \mathcal{A}} $		M1	[0]
			= 71.57° with no errors seen llow radians in this part. If the only trig error is a sign err	or in $\cos(x-\alpha)$ giv	A1 e	[3]
	(ii)	Evaluate	$\cos^{-1}(2/\sqrt{10})$ correctly to at least 1 d.p. (50.7684°) (All	ow 50.7° here)	B1√	
			an appropriate method to find a value of 2θ in $0^\circ < 2\theta < 180$)°	M1	
			answer for θ in the given range, e.g. $\theta = 61.2^{\circ}$		A1 M1	
		-	propriate method to find another value of 2θ in the above ra cond angle, e.g. $\theta = 10.4^{\circ}$, and no others in the given range	nge	A1	[5]
		[Ignore an [Treat ans [SR: The $\cos 2\theta$,or in the giv	In the given range in the others in the given range inswers outside the given range.] swers in radians as a misread and deduct A1 from the answer is use of correct trig formulae to obtain a 3-term quadratic tan 2θ earns M1; then A1 for a correct quadratic, M1 for of en range, and A1 + A1 for the two correct answers (candida spurious roots to get the final A1).]	ic in tan θ , sin 2θ btaining a value of θ), 9	[9]

	Page 6		Mark Scheme: Teachers' version	Syllabus	Paper	٢
			GCE AS/A LEVEL – October/November 20		31	
7	(i)		rect method to express \overrightarrow{OP} in terms of λ e given answer		M1 A1	[2]
	(ii)	<i>EITHER</i> : <i>OR1</i> :	Use correct method to express scalar product of \overline{O} , in terms of λ Using the correct method for the moduli, divide sc moduli and express cos $AOP = \cos BOP$ in terms of Use correct method to express $OA^2 + OP^2 - AP^2$, o	alar products by product $f \lambda$, or in terms of λ and	M1 s of OP M1* rms	
			of λ Using the correct method for the moduli, divide exproduct of the relevant moduli and express cos AC or λ and OP	$DP = \cos BOP$ in terms of		
		Obtain a c	correct equation in any form, e.g. $\frac{9+2\lambda}{3\sqrt{(9+4\lambda+12\lambda^2)}}$	$= \frac{11+14\lambda}{5\sqrt{(9+4\lambda+12\lambda^2)}}$	A1	
		Solve for $\lambda = 0$			M1(dep*) A1	[5]
		[SR: The	$\overset{\circ}{M1*}$ can also be earned by equating $\cos AOP$ or $\cos DB$ and obtaining an equation in λ . The exact value			
		but accep spurious r	t non-exact working giving a value of λ which rounegative root of the quadratic in λ is rejected.] w a solution reaching $\lambda = \frac{3}{8}$ after cancelling identic	unds to 0.375, provided	the	
			ore 4/5. The marking will run M1M1A0M1A1, o			
	(iii)	Verify the	e given statement correctly		B1	[1]
8	(i)	Obtain on Obtain a s	elevant method to determine a constant e of the values $A = 3$, $B = 4$, $C = 0$ second value e third value		M1 A1 A1 A1	[4]
	(ii)	Integrate a Obtain ter	and obtain term $-3 \ln(2 - x)$ and obtain term $k \ln(4 + x^2)$ rm $2 \ln(4 + x^2)$ correct limits correctly in a complete integral of the	form	$egin{array}{c} B1\\ M1\\ A1 \end{array}$	
		$a \ln(2-x)$	$b) + b \ln(4 + x^2), ab \neq 0$ ven answer following full and correct working		M1 A1	[5]

	Page 7		Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – October/November 2011	9709	31	
9	(i)	Equate de	act rule rrect derivative in any form rivative to zero and solve for x swer $x = e^{-\frac{1}{2}}$, or equivalent		M1 A1 M1 A1	
		Obtain an	swer $y = -\frac{1}{2} e^{-1}$, or equivalent		A1	[5]
	(ii)	Attempt in	ntegration by parts reaching $kx^3 \ln x \pm k \int x^3 \cdot \frac{1}{x} dx$		M1*	
		Obtain $\frac{1}{3}$	$x^3 \ln x - \frac{1}{3} \int x^2 dx$, or equivalent		A1	
		Integrate a	again and obtain $\frac{1}{3}x^3 \ln x - \frac{1}{9}x^3$, or equivalent		A1	
			x = 1 and $x = e$, having integrated twice		M1(dep*)	
		Obtain an	swer $\frac{1}{9}(2e^3+1)$, or exact equivalent		A1	[5]
		[SR: An a	ttempt reaching $ax^2 (x \ln x - x) + b \int 2x(x \ln x - x) dx$ score	es M1. Then give	the	
		first A1 fo	or $I = x^2 (x \ln x - x) - 2I + \int 2x^2 dx$, or equivalent.]			
10	(a)	EITHER: OR:	Square $x + iy$ and equate real and imaginary parts to 1 and Obtain $x^2 - y^2 = 1$ and $2xy = -2\sqrt{6}$ Eliminate one variable and find an equation in the other Obtain $x^4 - x^2 - 6 = 0$ or $y^4 + y^2 - 6 = 0$, or 3-term equivale Obtain answers $\pm (\sqrt{3} - i\sqrt{2})$ Denoting $1 - 2\sqrt{6i}$ by $R \operatorname{cis} \theta$, state, or imply, square ro and find values of R and either $\cos \theta$ or $\sin \theta$ or $\tan \theta$ Obtain $\pm \sqrt{5}(\cos \frac{1}{2}\theta + i\sin \frac{1}{2}\theta)$, and $\cos \theta = \frac{1}{5}$ or $\tan \theta = -2\sqrt{6}$ Use correct method to find an exact value of $\cos \frac{1}{2}\theta$ or $\sin \theta$ Obtain $\cos \frac{1}{2}\theta = \pm \sqrt{\frac{3}{5}}$ and $\sin \frac{1}{2}\theta = \pm \sqrt{\frac{2}{5}}$, or equivalent	ent ots are $\pm \sqrt{R}$ cis($\sin \theta = -\frac{2\sqrt{6}}{5}$	A1 M1(dep*) A1 A1	[5]
			Obtain answers $\pm (\sqrt{3} - i\sqrt{2})$, or equivalent [Condone omission of \pm except in the final answers.]		A1	
	(b)	Show a ci Shade the Carry out Obtain an	Intropresenting 3i on a sketch of an Argand diagram rcle with centre at the point representing 3i and radius 2 interior of the circle a complete method for finding the greatest value of arg z swer 131.8° or 2.30 (or 2.3) radians s on solutions where the centre is at the point representing –	3i.]	B1 B1√ B1√ M1 A1	[5]