UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2008 question paper

9709 MATHEMATICS

9709/03

Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2008	9709	03

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2008	9709	03

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{"}$ marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

 Page 4	Mark Scheme	Syllabus	Paper	
	GCE A/AS LEVEL – October/November 2008	9709	03	
Use laws of log	arithms and remove logarithms correctly		M1	
-	$x^2 x$, or equivalent		Al	
Obtain answer x			Al	[3
[SR: If the logar	ithmic work is to base 10 then only the M mark is available.]			
EITHER: State	correct unsimplified first two terms of the expansion of $\sqrt{(1-2x)}$	$\frac{1}{2}$, e.g. $1 + \frac{1}{2}(-2x)$	B1	
State	correct unsimplified term in x^2 , e.g. $\frac{1}{2} \cdot (\frac{1}{2} - 1) \cdot (-2x)^2 / 2!$		B1	
Obtai	in sufficient terms of the product of $(1 + x)$ and the expansion up t	to the term in x^2		
of $$	(1-2x)		M1	
Obtai	in final answer $1 - \frac{3}{2}x^2$		A1	
[The	B marks are not earned by versions with symbolic binomial coeff	ficients such as $\begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix}$.]		
[SR:	An attempt to rewrite $(1+x)\sqrt{(1-2x)}$ as $\sqrt{(1-3x^2)}$ earns M1 A1	and the subsequent		
	asion $1 - \frac{3}{2}x^2$ gets M1 A1.]	-		
	te expression and evaluate $f(0)$ and $f'(0)$, having used the produc	t rule	M1	
	f(0) = 1 and $f'(0) = 0$ correctly f(0) = -3 correctly		A1 A1	
	al answer $1 - \frac{3}{2}x^2$, with no errors seen		A1 A1	[•
o o unin min				L
-	tient or product rule		M1	
Obtain correctly	<i>y</i> the derivative in any form, e.g. $\frac{e^x \cos x + e^x \sin x}{\cos^2 x}$		A1	
	we to zero and reach $\tan x = k$		M1* M1(de	ep*)
Obtain $x = -\frac{1}{4}\pi$	(or -0.785) only (accept x in $[-0.79, -0.78]$ but not in degrees)		A1	[
solution can lie	narks are independent. Fallacious log work forfeits the M1*. For soutside the given range and be in degrees, but the mark is not avan for an entirely correct answer to the whole question.]			
State or imply $\frac{d}{d}$	$\frac{dx}{d\theta} = a(2 - 2\cos 2\theta) \text{ or } \frac{dy}{d\theta} = 2a\sin 2\theta$		B1	
Use $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}\theta} \div \frac{\mathrm{d}y}{\mathrm{d}\theta}$	$\frac{\mathrm{d}x}{\mathrm{d} heta}$		M1	
Obtain $\frac{dy}{dx} = \frac{1}{(1+x)^2}$	$\frac{\sin 2\theta}{-\cos 2\theta}$, or equivalent		A1	
	prrect sin $2A$ and cos $2A$ formulae		M1	
-	n result following sufficient working		A1	[
that assumes θ	t which assumes a is the parameter and θ a constant can only earn is the parameter and a is a function of θ can earn B1M1A0M1A0 mpt that gives a value, e.g. 1, or ignores a, give B0 but allow th).]		

[SR: For an attempt that gives a value, e.g. 1, or ignores a, give B0 but allow the remaining marks.]

Pa	Page 5 Mark Scheme Syllabus GCE A/AS LEVEL – October/November 2008 9709) EITHER: Attempt division by $2x^2 - 3x + 3$ and state partial quotient $2x$ Complete division and form an equation for a Obtain $a = 3$ OR1: By inspection or using an unknown factor $bx + c$, obtain $b = 2$ Complete the factorisation and obtain a Obtain $a = 3$ OR2: Find a complex root of $2x^2 - 3x + 3 = 0$ and substitute it in $p(x)$ Equate a correct expression to zero Obtain $a = 3$ OR3: Use $2x^2 = 3x - 3$ in $p(x)$ at least once Reduce the expression to the form $a + c = 0$, or equivalent Obtain $a = 3$ ii) State answer $x < -\frac{1}{2}$ only Carry out a complete method for showing $2x^2 - 3x + 3$ is never zero Complete the justification of the answer by showing that $2x^2 - 3x + 3 > 0$ for all x [These last two marks are independent of the B mark, so B0M1A1 is possible. Alternative method include (a) Complete the square M1 and use a correct completion to justify the answer A1; (b) Dr a recognizable graph of $y = 2x^2 + 3x - 3$ or $p(x)$ M1 and use a correct graph to justify the answer (c) Find the x-coordinate of the stationary point of $y = 2x^2 + 3x - 3$ and either find its y-coordinat determine its nature M1, then use minimum point with correct coordinates to justify the answer A [Do not accept ≤ for <]	Syllabus	Paper		
		GCE A/AS LEVEL – October/November 2008	October/November 2008 9709 03		
(i)	EITHER:			B1	
				M1	
		Obtain a = 3		A1	
	<i>OR</i> 1:			B1	
				M1	
		Obtain $a = 3$		A1	
	OR2:	Find a complex root of $2x^2 - 3x + 3 = 0$ and substitute it in $p(x)$		M1	
		1 1 1 1 1		A1	
				A1	
		2			
	OR3:			B1	
				M1	
		Obtain a = 3		A1	
(ii)	State answ	wer $x < -\frac{1}{2}$ only		B1	
	Carry out	a complete method for showing $2x^2 - 3x + 3$ is never zero		M1	
	Complete	the justification of the answer by showing that $2x^2 - 3x + 3 > 0$ for	or all x	A1	
	-				
	(c) Find th	he x-coordinate of the stationary point of $y = 2x^2 + 3x - 3$ and eith	er find its y-coordinate o	r	
	determine	e its nature M1, then use minimum point with correct coordinates to	justify the answer A1.]		
	[Do not a	$ccept \le for <]$			
(i)		nply at any stage answer $R = 13$		B1	
		formula to find α		M1	
		= 67.38° with no errors seen	$(-\alpha)$ and $M(1 \land 0)$	A1	
	LDo not al	llow radians in this part. If the only trig error is a sign error in $sin(x)$	$(+ \alpha)$ give MIAU.]		
(#)	Evolueto	$\sin^{-1}(11)$ correctly to at least 1 d p (57.70577 °)		B1√	
(11)	Evaluate	$\sin^{-1}\left(\frac{11}{13}\right)$ correctly to at least 1 d.p (57.79577°)		DIV	
	a				

Carry out an appropriate method to find a value of 2θ in $0^{\circ} < 2\theta < 360^{\circ}$	M1	
Obtain an answer for θ in the given range, e.g. $\theta = 27.4^{\circ}$	A1	
Use an appropriate method to find another value of 2θ in the above range	M1	
Obtain second angle, e.g. $\theta = 175.2^{\circ}$ and no others in the given range	A1	[5]
[Ignore answers outside the given range.]		
[Treat answers in radians as a misread and deduct A1 from the answers for the angles.]		
[SD. The use of compating formulas to obtain a 2 terms and detic in term 0 sin 20 and 20 and ter 20		

[SR: The use of correct trig formulae to obtain a 3-term quadratic in tan θ , sin 2θ , cos 2θ , or tan 2θ earns M1; then A1 for a correct quadratic, M1 for obtaining a value of θ in the given range, and A1 + A1 for the two correct answers (candidates who square must reject the spurious roots to get the final A1).]

_	Pa	ge 6		Mark Scheme	Syllabus	Paper	
			GC	E A/AS LEVEL – October/November 2008	9709	03	
	(i)	Carry out	correct p	prrect normal vector to either plane, e.g. $2i - j - 3k$, or $i + 2$ process for evaluating the scalar product of the two norma process for the moduli, divide the scalar product by the pr	ls	B1 M1	
		and evaluation	ate the in	werse cosine of the result		M1	
		Obtain an	swer 57.'	7° (or 1.01 radians)		A1	
	(ii)	EITHER:	Carry of	ut a complete method for finding a point on the line		M1	
				such a point, e.g. (2, 0, -1) R: State two correct equations for a direction vector of the	e line, e.g. 2 <i>a -b -</i> 3	c = 0 A1	
				and $a + 2b + 2c = 0$, 6	B1	
				Solve for one ratio, e.g. <i>a</i> : <i>b</i>		M1	
				Obtain $a: b: c = 4: -7: 5$, or equivalent		A1	
				State a correct answer, e.g. $\mathbf{r} = 2\mathbf{i} - \mathbf{k} + \lambda(4\mathbf{i} - 7\mathbf{j} + 5\mathbf{k})$		A1√	
			OR:	Obtain a second point on the line, e.g. $(0, \frac{7}{2}, -\frac{7}{2})$		A1	
				Subtract position vectors to obtain a direction vector		M1	
				Obtain $4\mathbf{i} - 7\mathbf{j} + 5\mathbf{k}$, or equivalent		Al	
				State a correct answer, e.g. $\mathbf{r} = 2\mathbf{i} - \mathbf{k} + \lambda(4\mathbf{i} - 7\mathbf{j} + 5\mathbf{k})$		A1√	
			OR:	Attempt to calculate the vector product of two normals	5	M1	
				Obtain two correct components		A1	
				Obtain $4\mathbf{i} - 7\mathbf{j} + 5\mathbf{k}$, or equivalent State a correct answer, e.g. $\mathbf{r} = 2\mathbf{i} - \mathbf{k} + \lambda(4\mathbf{i} - 7\mathbf{j} + 5\mathbf{k})$		A1 A1√	
		<i>OR</i> 1:	-	one variable in terms of a second $14-4y$		M1	
			Obtain a	a correct simplified expression, e.g. $x = \frac{14 - 4y}{7}$		A1	
				the first variable in terms of a third		M1	
			Obtain a	a correct simplified expression, e.g. $x = \frac{14 + 4z}{5}$		A1	
				vector equation for the line		M1	
			State a c	correct answer, e.g. $\mathbf{r} = \frac{7}{2}\mathbf{j} - \frac{7}{2}\mathbf{k} + \lambda(\mathbf{i} - \frac{7}{4}\mathbf{j} + \frac{5}{4}\mathbf{k})$, or equiv	ivalent	A1√	
		OR2:	-	one variable in terms of a second		M1	
			Obtain a	a correct simplified expression, e.g. $y = \frac{14 - 7x}{4}$		A1	
			Express	the third variable in terms of the second		M1	
			Obtain a	a correct simplified expression, e.g. $z = \frac{5x - 14}{4}$		A1	
				vector equation for the line		M1	
			State a c	correct answer, e.g. $\mathbf{r} = \frac{7}{2} \mathbf{j} - \frac{7}{2} \mathbf{k} + \lambda (\mathbf{i} - \frac{7}{4} \mathbf{j} + \frac{5}{4} \mathbf{k})$, or equiv	valent	A1√	
				is dependent on all M marks having been obtained.]			

Pa	age 7	Mark Scheme	Syllabus	Paper	
	-	GCE A/AS LEVEL – October/November 2008	9709	03	
8 (i)	State or ob	btain $\frac{dV}{dt} = 4h^2 \frac{dh}{dt}$, or $\frac{dV}{dh} = 4h^2$, or equivalent		B1	
	State or im	nply $\frac{\mathrm{d}V}{\mathrm{d}t} = 20 - kh^2$		B1	
	Show that	ven values to evaluate k k = 0.2, or equivalent, and obtain the given equation s dependent on at least one B mark having been earned.]		M1 A1	[4
(ii)	Fully justi	fy the given identity		B1	[
(iii)		variables correctly and attempt integration of both sides $ms -20h$ and t, or equivalent		M1 A1	
	Obtain terr	ms $a\ln(10+h) + b\ln(10-h)$, where $ab \neq 0$, or $k\ln\left(\frac{10+h}{10-h}\right)$		M1	
		rrect terms, i.e. with $a = 100$ and $b = -100$, or $k = 2000/20$, or equination constant and obtain a correct expression for t in terms of h	valent	A1 A1	[5
(i)	Integrate b	by parts and reach $kxe^{\frac{1}{2}x} - k\int e^{\frac{1}{2}x} dx$		M1	
		$e^{\frac{1}{2}x} - 2\int e^{\frac{1}{2}x} dx$		A1	
		the integration, obtaining $2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x}$, or equivalent limits correctly and equate result to 6, having integrated twice		A1 M1	
	Rearrange	and obtain $a = e^{-\frac{1}{2}a} + 2$		A1	[:
(ii)		ognizable sketch of a relevant exponential graph, e.g. $y = e^{-\frac{1}{2}x} + 2$ econd relevant straight line graph, e.g. $y = x$, or curve, and indicate	e the root	B1 B1	[2
(iii)		sign of $x - e^{-\frac{1}{2}x} - 2$ at $x = 2$ and $x = 2.5$, or equivalent given statement with correct calculations and argument		M1 A1	[
(iv)	Obtain fina	erative formula $x_{n+1} = 2 + e^{-\frac{1}{2}x_n}$ correctly at least once, with $2 \le x_n$ al answer 2.31		M1 A1	
		icient iterations to at least 4 d.p. to justify its accuracy to 2 d.p., or the interval (2.305, 2.315)	show there is a sign	A1	[.
0 (i)		the modulus of w is 1 the argument of w is $\frac{2}{3}\pi$ or 120° (accept 2.09, or 2.1)		B1 B1	[2
(ii)		the modulus of wz is R the argument of wz is $\theta + \frac{2}{3}\pi$		B1√ B1√	
		the modulus of z/w is R the argument of z/w is $\theta - \frac{2}{3}\pi$		B1√ B1√	[•
(iii)		apply the points are equidistant from the origin apply that two pairs of points subtend $\frac{2}{3}\pi$ at the origin, or that all the	nree pairs subtend	B1	
		es at the origin		B1	[

Page 8		Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2008 9709		9709	03
(iv)	Multiply 4	$+2i$ by w and use $i^2 = -1$		M1
	Obtain – ($(2+\sqrt{3})+(2\sqrt{3}-1)i$, or exact equivalent		A1
		2i by w, multiplying numerator and denominator by the conjugate	e of w, or equivalent	M1
	Obtain – ($(2-\sqrt{3}) - (2\sqrt{3}+1)i$, or exact equivalent		A1

[Use of polar form of 4 + 2i can earn M marks and then A marks for obtaining exact x + iy answers.] [SR: If answers only seen in polar form, allow B1+B1 in (i), B1 $\sqrt{+}$ B1 $\sqrt{-}$ in (ii), but A0 + A0 in (iv).]