UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2006 question paper

9709 MATHEMATICS

9709/03

Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

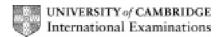
All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

The grade thresholds for various grades are published in the report on the examination for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2006 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.


Mark Scheme Notes

Marks are of the following three types:

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF Any Equivalent	Form (of answer	is equally acceptable)
--------------------	-----------------	------------------------

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - OCT/NOV 2006	9709	03

1	EITHER:	State or imply non-modular inequality $-0.5 < 3^x - 8 < 0.5$, or $(3^x - 8)^2 < (0.5)^2$, or		
		corresponding pair of linear equations or quadratic equation	B1	
		Use correct method for solving an equation of the form $3^x = a$, where $a \ge 0$	M1	
		Obtain critical values 1.83 and 1.95, or exact equivalents State correct answer 1.83 < x < 1.95	A1	
	OR:	Use correct method for solving an equation of the form $3^x = a$, where $a > 0$	MI	
	OR:	Obtain one critical value, e.g. 1.95, or exact equivalent	Al	
		Obtain the other critical value 1.83, or exact equivalent	Al	
		State correct answer $1.83 \le x \le 1.95$ [Do not condone \le for \le . Allow final answer given in the form $1.83 \le x$, (and) $x \le 1.95$.]	A1	4
		Exact equivalents must be in terms of ln or logarithms to base 10.]		
		[SR: Solutions given as logarithms to base 3 can only earn M1 and B1 of the first scheme.]		
2	EITHER:	Use tan 2.4 formula and obtain a horizontal equation in tan x	M1	
		Simplify the equation to the form $3\tan^2 x = 1$, or equivalent	A1	
		Obtain answer 30°	A1	
	OR:	Obtain second answer 150° and no others in the range Use sin 2A and cos 2A formulae and obtain a horizontal equation in sin x or cos x	A1 M1	
		Simplify the equation to $4\sin^2 x = 1, 4\cos^2 x = 3$, or equivalent	AI	
		Obtain answer 30°	Al	
		Obtain second answer 150° and no others in the range	A1	4
		[Ignore answers outside the given range.] [Treat answers in radians as a MR and deduct one mark from the marks for the angles.]		
		[Methods leading to an equation in $\cos 3x$ or $\cos 2x$, or to the equality of two tangents		
		can also earn M1A1, and then A1 + A1 for 30° and 150° only.]		
		[SR: If the answer 30° is found by inspection or from a graph, and is exactly verified, award If a second answer 150° is found and verified, and no others stated, award B2.]	d B2.	
		is a second answer 150. Is round and verified, and no others stated, award 62.]		
3	(i) State	derivative is $6 e^x - 3 e^{3x}$	В1	
	EITH	VER: Equate derivative to zero and simplify to an equation of the form $e^{2\pi} = a$ Carry out method for calculating x , where $a > 0$	M1* M1(de	p*)
		Obtain answer $x = \frac{1}{2} \ln 2$, or equivalent (0.347, or 0.346, or 0.35)	A1	
	OR:	Equate terms of the derivative and obtain a linear equation in x by taking logs correctly Solve the linear equation for x	M1* M1(de	p*)
		Obtain answer $x = \frac{1}{2} \ln 2$, or equivalent (0.347, or 0.346, or 0.35)	A1	4
		out a method for determining the nature of a stationary point	M1	
	Show	that the point is a maximum with no errors seen	A1	2
4		variables correctly and attempt to integrate one side	M1	
	Obtain te	erms $\frac{1}{2}\ln(1+y^2)$ and x , or equivalent A1	+ A1	
	Evaluate	a constant or use limits $x = 0$, $y = 2$ with a solution containing terms $k \ln(1+y^2)$ and x ,		
	or equiva		M1	
	Obtain ar	ny correct form of solution, e.g. $\frac{1}{2}\ln(1+y^2) = x + \frac{1}{2}\ln 5$	A1	
	Rearrang	e and obtain $y^2 = 5 e^{2x} - 1$, or equivalent	A1	6

Page 5	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - OCT/NOV 2006	9709	03

5	(i)	Simplify p	product and obtain $(1+x)-(1-x)$	B1	
		Complete	the proof of the given result with no errors seen	B1	2
	(ii)		ct method to obtain the first two terms of the expansion of $\sqrt{1+x}$ or $\sqrt{1-x}$ Obtain any correct unsimplified expansion of the numerator of the RHS of the identity	M1	
			up to the terms in x^3	Al	
			Obtain final answer with constant term $\frac{1}{2}$	A1	
			Obtain term $\frac{1}{16}x^2$ and no term in x	A1	
		OR:	Obtain any correct unsimplified expansion of the denominator of the LHS of the identified	ty	
			up to the terms in x^2	A1	
			Obtain final answer with constant term $\frac{1}{2}$	A1	
			Obtain term $\frac{1}{16}x^2$ and no term in x	A1	4
			[Symbolic binomial coefficients are not sufficient for the M1. Allow two correct separal expansions to earn the first A1 if the context is clear and appropriate.]	ite	
			[Allow the use of Maclaurin, giving M1A1 for $f(0) = \frac{1}{2}$ and $f'(0) = 0$, A1 for $f''(0) = \frac{1}{8}$,	
			and A1 for obtaining the correct final answer.]		

State
$$2(3y^2)\frac{dy}{dx}$$
 as derivative of $2y^3$, or equivalent

State $3x\frac{dy}{dx} + 3y$ as derivative of $3xy$, or equivalent

B1

Solve for $\frac{dy}{dx}$

Obtain given answer correctly

[The M1 is dependent on at least one of the B marks being obtained.]

(ii) State or imply that the coordinates satisfy $y - x^2 = 0$

B1

Obtain an equation in x (or in y)

Solve and obtain $x = 1$ only (or $y = 1$ only)

Substitute x - (or y -)value in $y - x^2 = 0$ or in the equation of the curve

Obtain $y = 1$ only (or $x = 1$ only)

[SR: If B1 is earned and $(1, 1)$ stated to be the only solution with no other evidence, award B2. If the point is also shown to lie on the curve award a further B2.]

Page 6	Mark Scheme	Syllabus	Paper
1	GCE A/AS LEVEL - OCT/NOV 2006	9709	03

7	(i)	EITHER:	State or imply general point of I has coordinates $(s, 1-2s, 1+s)$, or equivalent Substitute in LHS of plane equation	B1 M1	
			Verify that the equation is satisfied	Al	
		OR:	State or imply the plane has equation \mathbf{r} . $(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) = 5$, or equivalent	Bl	
		CAL.	Substitute for r in LHS and expand the scalar product	MI	
			Verify that the equation is satisfied	A1	
		OR:	Verify that a point of / lies on the plane	BI	
		CAL	Find a second point on I and substitute its coordinates in the equation of p	MI	
			Verify second point, e.g. $(1, -1, 2)$ lies on the plane	Al	
		OR:	Verify that a point of / lies on the plane	BI	
		On.	Form scalar product of a direction vector of I with a vector normal to p	MI	
			Verify scalar product is zero and l is parallel to p	A1	3
	(16)	EITHER-	Use scalar product of relevant vectors to form an equation in a, b, c, e.g. $a - 2b$		3
	(11)	LITTER.	or $a + 2b + 3c = 0$	MI*	
			State two correct equations in a, b, c	Al	
			Solve simultaneous equations and find one ratio, e.g. a: b	M1(der	0.10
			Obtain $a:b:c=4:1:-2$, or equivalent	Al	27
			Substitute correctly in $4x + y - 2z = d$ to find d	MI	
			Obtain equation $4x + y - 2z = 1$, or equivalent	Al	
		OR:	Attempt to calculate vector product of relevant vectors, e.g. $(i-2j+k)\times(i+2j-2)$		
		Un.	Obtain 2 correct components of the product	Al	
			Obtain correct product, e.g. $-8i - 2j + 4k$	A1	
			Substitute correctly in $4x + y - 2z = d$ to find d	MI	
			Obtain equation $4x + y - 2z = 1$, or equivalent	All allow the	
			[SR: If the outcome of the vector product is the negative of the correct answer	allow the	
		OR:	final mark to be available, i.e. M2A0A0M1A1is possible.]	3.42	
		C/K:	Attempt to form 2-parameter equation for the plane with relevant vectors	M2	
			State a correct equation, e.g. $\mathbf{r} = 2\mathbf{i} + \mathbf{j} + 4\mathbf{k} + \lambda(\mathbf{i} - 2\mathbf{j} + \mathbf{k}) + \mu(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$	A1	
			State 3 equations in x , y , z , λ , μ	AI	
			Eliminate λ and μ	MI	
			Obtain equation $4x + y - 2z = 1$, or equivalent	A1	6
8	(i)	EITHER:	State or imply $f(x) = \frac{A}{2x+1} + \frac{B}{x+1} + \frac{C}{(x+1)^2}$	B1	
	(-)	EM FFILM	$2x+1$ $x+1$ $(x+1)^2$		
			Use any relevant method to obtain a constant	M1	
			Obtain one of the values $A = 2$, $B = -1$, $C = 3$	Al	
			Obtain the remaining two values	A1 + A1	
			[A correct solution starting with third term $\frac{Cx}{(x+1)^2}$ or $\frac{Cx+D}{(x+1)^2}$ is also possible	:.]	
		OB	State or imply $f(x) = \frac{A}{2x+1} + \frac{Dx+E}{(x+1)^2}$		
		OR:	State or imply $I(x) = \frac{1}{2x+1} + \frac{1}{(x+1)^2}$	B1	
			()		
			Use any relevant method to obtain a constant	MI	
			Obtain one of the values $A = 2$, $D = -1$, $E = 2$	A1	_
			Obtain the remaining two values	A1 + A1	5
	(ii)	Integrate a	nd obtain terms $\frac{1}{2} \cdot 2 \ln(2x+1) - \ln(x+1) - \frac{3}{x+1}$, or equivalent B1	V + B1V + B1V	
		Use limits	correctly, having integrated all the partial fractions	M1	
			en answer following full and exact working	A1	5
			on A, B, C etc.]		
			C, or E are omitted, give B1M1in part (i) and B1√B1√M1 in part (ii): max 5/10	0.]	

Page 7	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL - OCT/NOV 2006	9709	03

9	(i)	EITHER:	Multiply numerator and denominator by 2 + i , or equivalent Simplify numerator to 5 + 5i or denominator to 5	M1 A1	
		OR:	Obtain answer 1 + i Obtain two equations in x and y, and solve for x or for y	A1 M1	
			Obtain $x = 1$ Obtain $y = 1$	A1 A1	
		OR:	Using correct processes express u in polar form	M1	
			Obtain $u = \sqrt{2}$ (cos 45° + i sin 45°), or equivalent Obtain answer 1 + i	A1 A1	3
	(ii)	State that	the modulus is $\sqrt{2}$ or 1.41	B1√	
	(-)		t the argument is 45° or $\frac{1}{4}\pi$ (or 0.785)	B1√	2
	(iii)	Show the	e point representing u in a relatively correct position circle with centre at the point representing u or imply the radius is 1	B1√ B1√	3
		[NB: If the celling both for a	he Argand diagram has unequal scales the locus is not circular in appearance, but an ose with centre u and equal axes parallel to the axes of the diagram earns B1\(\sigma\), and B1 if a semi-axes are indicated or implied to be equal to 1. In such a situation only award B1\(\sigma\) circle with centre u and a horizontal or vertical radius indicated or implied to be 1.]		
	(iv)		complete strategy for calculating min z for the locus	M1	
			swer $\sqrt{2}-1$ (or 0.414) s on the value of u .]	A1√	2
10	(i)	Use prod	uct rule	М1	
	4-7		orrect derivative $\cos 2x - 2x \sin 2x$	A1	
	780		erivative to zero and obtain given answer correctly	A1	3
	(11)		terative formula correctly at least once nal answer 0.43	M1	
			fficient iterations to at least 3d.p. to justify its accuracy to 2 d.p., or show there is a sign the interval (0.425, 0.435)	A1	3
	(iii)	Attempt	integration by parts and obtain $\pm kx \sin 2x \pm \int l \sin 2x dx$, where $k, l = \frac{1}{2}, 1$, or 2	M1*	
			$x \sin 2x - \int_{\frac{1}{2}} \sin 2x dx$	A1	
		Obtain ir	definite integral $\frac{1}{2}x \sin 2x + \frac{1}{4}\cos 2x$	A1	
		Use limit	ts $x = 0$ and $x = \frac{1}{4}\pi$ having integrated twice	M1(de	p)*
		Obtain a	nswer $\frac{1}{8}\pi - \frac{1}{4}$, or exact equivalent	A1	5