

November 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 9709/03, 8719/03

MATHEMATICS Mathematics and Higher Mathematics : Paper 3

	Mark Scheme Syllabus Pape	er 🛛
	A AND AS LEVEL – NOVEMBER 2003 9709/8719 3	
EITHER:	State or imply non-modular inequality $-5 < 2^x - 8 < 5$, or $(2^x - 8)^2 < 5^2$ or corr	respon
	pair of linear equations or quadratic equation	
	Use correct method for solving an equation of the form $2^{x} = a$	
	State correct answer $1.58 \le x \le 3.70$	
	State confect answer $1.38 \le x \le 5.70$	
OR:	Use correct method for solving an equation of the form $2^x = a$	
	Obtain one critical value (probably 3.70), or exact equivalent	
	Obtain the other critical value, or exact equivalent	
	State correct answer $1.58 < x < 3.70$	
Allow 1.59 at	nd 3.7. Condone \leq for $<$. Allow final answers given separately. Exact equivalent	s mus
n terms of ln	or logarithms to base 10.]	
SR: Solutions	given as logarithms to base 2 can only earn M1 and B1 of the first scheme.]	
EITHER:	Obtain correct unsimplified version of the x^2 or x^4 term of the expansion of	
	$(1+\frac{1}{2}x^2)^{-2}$ or $(2+x^2)^{-2}$	
	State correct first term $\frac{1}{4}$	
	Obtain next two terms $-\frac{1}{2}r^2 + \frac{3}{2}r^4$	Δ1+
	$4^{\lambda} + 16^{\lambda}$	111
	(2)	
The M mark i	is not earned by versions with unexpanded binomial coefficients such as $\begin{pmatrix} -2 \\ 1 \end{pmatrix}$.]	
The M mark i SR: Answers	is not earned by versions with unexpanded binomial coefficients such as $\binom{-2}{1}$.] given as $\frac{1}{4}(1-x^2+\frac{3}{4}x^4)$ earn M1B1A1.]	
The M mark i SR: Answers SR: Solutions	is not earned by versions with unexpanded binomial coefficients such as $\binom{-2}{1}$.] given as $\frac{1}{4}(1-x^2+\frac{3}{4}x^4)$ earn M1B1A1.] involving $k(1+\frac{1}{2}x^2)^{-2}$, where $k = 2, 4$ or $\frac{1}{2}$ can earn M1 and A1 for a correct	
The M mark i SR: Answers SR: Solutions	is not earned by versions with unexpanded binomial coefficients such as $\binom{-2}{1}$.] given as $\frac{1}{4}(1-x^2+\frac{3}{4}x^4)$ earn M1B1A1.] involving $k(1+\frac{1}{2}x^2)^{-2}$, where $k = 2, 4$ or $\frac{1}{2}$ can earn M1 and A1 for a correct	
The M mark i SR: Answers SR: Solutions implified term	is not earned by versions with unexpanded binomial coefficients such as $\binom{-2}{1}$.] given as $\frac{1}{4}(1-x^2+\frac{3}{4}x^4)$ earn M1B1A1.] is involving $k(1+\frac{1}{2}x^2)^{-2}$, where $k = 2, 4$ or $\frac{1}{2}$ can earn M1 and A1 for a correct in in x^2 or x^4 .]	
The M mark i SR: Answers SR: Solutions implified term <i>OR</i> :	is not earned by versions with unexpanded binomial coefficients such as $\binom{-2}{1}$.] given as $\frac{1}{4}(1-x^2+\frac{3}{4}x^4)$ earn M1B1A1.] is involving $k(1+\frac{1}{2}x^2)^{-2}$, where $k = 2$, 4 or $\frac{1}{2}$ can earn M1 and A1 for a correct in in x^2 or x^4 .] Differentiate expression and evaluate f(0) and f'(0), where f'(x) = $kx(2+x^2)^{-1}$	3
The M mark i SR: Answers SR: Solutions mplified tern <i>OR</i> :	is not earned by versions with unexpanded binomial coefficients such as $\binom{-2}{1}$.] given as $\frac{1}{4}(1-x^2+\frac{3}{4}x^4)$ earn M1B1A1.] involving $k(1+\frac{1}{2}x^2)^{-2}$, where $k = 2, 4$ or $\frac{1}{2}$ can earn M1 and A1 for a correct in in x^2 or x^4 .] Differentiate expression and evaluate f(0) and f'(0), where f'(x) = $kx(2+x^2)^{-1}$.	3
The M mark i SR: Answers SR: Solutions mplified term <i>OR</i> :	is not earned by versions with unexpanded binomial coefficients such as $\binom{-2}{1}$.] given as $\frac{1}{4}(1-x^2+\frac{3}{4}x^4)$ earn M1B1A1.] involving $k(1+\frac{1}{2}x^2)^{-2}$, where $k = 2, 4$ or $\frac{1}{2}$ can earn M1 and A1 for a correct in in x^2 or x^4 .] Differentiate expression and evaluate f(0) and f'(0), where f'(x) = $kx(2+x^2)^{-1}$ State correct first term $\frac{1}{4}$ Obtain neut two terms $-\frac{1}{4}x^2+\frac{3}{4}x^4$	3
The M mark i SR: Answers SR: Solutions implified term <i>OR</i> :	is not earned by versions with unexpanded binomial coefficients such as $\binom{-2}{1}$.] given as $\frac{1}{4}(1-x^2+\frac{3}{4}x^4)$ earn M1B1A1.] involving $k(1+\frac{1}{2}x^2)^{-2}$, where $k = 2$, 4 or $\frac{1}{2}$ can earn M1 and A1 for a correct in in x^2 or x^4 .] Differentiate expression and evaluate f(0) and f'(0), where f'(x) = $kx(2+x^2)^{-1}$ State correct first term $\frac{1}{4}$ Obtain next two terms $-\frac{1}{4}x^2+\frac{3}{16}x^4$	3 A1+
The M mark i SR: Answers SR: Solutions mplified term <i>OR</i> : Allow exact o	is not earned by versions with unexpanded binomial coefficients such as $\binom{-2}{1}$.] given as $\frac{1}{4}(1-x^2+\frac{3}{4}x^4)$ earn M1B1A1.] involving $k(1+\frac{1}{2}x^2)^{-2}$, where $k = 2$, 4 or $\frac{1}{2}$ can earn M1 and A1 for a correct in in x^2 or x^4 .] Differentiate expression and evaluate f(0) and f'(0), where f'(x) = $kx(2+x^2)^{-1}$ State correct first term $\frac{1}{4}$ Obtain next two terms $-\frac{1}{4}x^2+\frac{3}{16}x^4$ lecimal equivalents as coefficients.]	3 A1+
The M mark i SR: Answers SR: Solutions mplified term <i>OR</i> : Allow exact o	is not earned by versions with unexpanded binomial coefficients such as $\binom{-2}{1}$.] given as $\frac{1}{4}(1-x^2+\frac{3}{4}x^4)$ earn M1B1A1.] involving $k(1+\frac{1}{2}x^2)^{-2}$, where $k = 2$, 4 or $\frac{1}{2}$ can earn M1 and A1 for a correct in in x^2 or x^4 .] Differentiate expression and evaluate f(0) and f'(0), where f'(x) = $kx(2+x^2)^{-1}$ State correct first term $\frac{1}{4}$ Obtain next two terms $-\frac{1}{4}x^2+\frac{3}{16}x^4$ decimal equivalents as coefficients.]	3 A1+
The M mark i SR: Answers SR: Solutions mplified term <i>OR</i> : Allow exact o	is not earned by versions with unexpanded binomial coefficients such as $\binom{-2}{1}$.] given as $\frac{1}{4}(1-x^2+\frac{3}{4}x^4)$ earn M1B1A1.] involving $k(1+\frac{1}{2}x^2)^{-2}$, where $k = 2$, 4 or $\frac{1}{2}$ can earn M1 and A1 for a correct in in x^2 or x^4 .] Differentiate expression and evaluate f(0) and f'(0), where f'(x) = $kx(2+x^2)^{-1}$ State correct first term $\frac{1}{4}$ Obtain next two terms $-\frac{1}{4}x^2+\frac{3}{16}x^4$ lecimal equivalents as coefficients.] Use correct cos 2 <i>A</i> formula, or equivalent pair of correct formulas, to obtain an	3 A1+ n
The M mark i SR: Answers SR: Solutions mplified term <i>OR</i> : Allow exact o	is not earned by versions with unexpanded binomial coefficients such as $\binom{-2}{1}$.] given as $\frac{1}{4}(1-x^2+\frac{3}{4}x^4)$ earn M1B1A1.] involving $k(1+\frac{1}{2}x^2)^{-2}$, where $k = 2$, 4 or $\frac{1}{2}$ can earn M1 and A1 for a correct in in x^2 or x^4 .] Differentiate expression and evaluate f(0) and f'(0), where f'(x) = $kx(2+x^2)^{-1}$ State correct first term $\frac{1}{4}$ Obtain next two terms $-\frac{1}{4}x^2+\frac{3}{16}x^4$ decimal equivalents as coefficients.] Use correct cos 2 <i>A</i> formula, or equivalent pair of correct formulas, to obtain an equation in cos θ	3 A1+ n
The M mark i SR: Answers SR: Solutions implified term <i>OR</i> : Allow exact c	is not earned by versions with unexpanded binomial coefficients such as $\binom{-2}{1}$.] given as $\frac{1}{4}(1-x^2+\frac{3}{4}x^4)$ earn M1B1A1.] involving $k(1+\frac{1}{2}x^2)^{-2}$, where $k = 2$, 4 or $\frac{1}{2}$ can earn M1 and A1 for a correct in in x^2 or x^4 .] Differentiate expression and evaluate f(0) and f'(0), where f'(x) = $kx(2+x^2)^{-1}$ State correct first term $\frac{1}{4}$ Obtain next two terms $-\frac{1}{4}x^2+\frac{3}{16}x^4$ decimal equivalents as coefficients.] Use correct cos 2 <i>A</i> formula, or equivalent pair of correct formulas, to obtain an equation in cos θ Obtain 3-term quadratic $6\cos^2 \theta + \cos \theta - 5 = 0$, or equivalent	3 A1+ n
The M mark i SR: Answers SR: Solutions implified tern <i>OR</i> : Allow exact o	is not earned by versions with unexpanded binomial coefficients such as $\binom{-2}{1}$.] given as $\frac{1}{4}(1-x^2+\frac{3}{4}x^4)$ earn M1B1A1.] is involving $k(1+\frac{1}{2}x^2)^{-2}$, where $k = 2$, 4 or $\frac{1}{2}$ can earn M1 and A1 for a correct in in x^2 or x^4 .] Differentiate expression and evaluate f(0) and f'(0), where f'(x) = $kx(2+x^2)^{-1}$ State correct first term $\frac{1}{4}$ Obtain next two terms $-\frac{1}{4}x^2+\frac{3}{16}x^4$ decimal equivalents as coefficients.] Use correct cos 2 <i>A</i> formula, or equivalent pair of correct formulas, to obtain an equation in cos θ Obtain 3-term quadratic $6\cos^2\theta + \cos\theta - 5 = 0$, or equivalent Attempt to solve quadratic and reach $\theta = \cos^{-1}(a)$	3 A1+ n
The M mark i SR: Answers SR: Solutions implified tern <i>OR</i> : Allow exact o	is not earned by versions with unexpanded binomial coefficients such as $\binom{-2}{1}$.] given as $\frac{1}{4}(1-x^2+\frac{3}{4}x^4)$ earn M1B1A1.] is involving $k(1+\frac{1}{2}x^2)^{-2}$, where $k = 2$, 4 or $\frac{1}{2}$ can earn M1 and A1 for a correct in in x^2 or x^4 .] Differentiate expression and evaluate f(0) and f'(0), where f'(x) = $kx(2+x^2)^{-1}$ State correct first term $\frac{1}{4}$ Obtain next two terms $-\frac{1}{4}x^2+\frac{3}{16}x^4$ decimal equivalents as coefficients.] Use correct cos 2 <i>A</i> formula, or equivalent pair of correct formulas, to obtain an equation in cos θ Obtain 3-term quadratic $6\cos^2\theta + \cos\theta - 5 = 0$, or equivalent Attempt to solve quadratic and reach $\theta = \cos^{-1}(a)$ Obtain answer 33.6° (or 33.5°) or 0.586 (or 0.585) radians	3 A1+ n
The M mark i SR: Answers SR: Solutions implified term <i>OR</i> : Allow exact o	Is not earned by versions with unexpanded binomial coefficients such as $\binom{-2}{1}$.] given as $\frac{1}{4}(1-x^2+\frac{3}{4}x^4)$ earn M1B1A1.] is involving $k(1+\frac{1}{2}x^2)^{-2}$, where $k = 2$, 4 or $\frac{1}{2}$ can earn M1 and A1 for a correct in in x^2 or x^4 .] Differentiate expression and evaluate f(0) and f'(0), where f'(x) = $kx(2+x^2)^{-1}$ State correct first term $\frac{1}{4}$ Obtain next two terms $-\frac{1}{4}x^2+\frac{3}{16}x^4$ decimal equivalents as coefficients.] Use correct cos 2 <i>A</i> formula, or equivalent pair of correct formulas, to obtain an equation in cos θ Obtain 3-term quadratic $6\cos^2\theta + \cos\theta - 5 = 0$, or equivalent Attempt to solve quadratic and reach $\theta = \cos^{-1}(a)$ Obtain answer 33.6° (or 33.5°) or 0.586 (or 0.585) radians Obtain answer 180° or π (or 3.14) radians and no others in range	3 A1+ n
The M mark i SR: Answers SR: Solutions implified term <i>OR</i> : Allow exact of	is not earned by versions with unexpanded binomial coefficients such as $\binom{-2}{1}$.] given as $\frac{1}{4}(1-x^2+\frac{3}{4}x^4)$ earn M1B1A1.] is involving $k(1+\frac{1}{2}x^2)^{-2}$, where $k = 2$, 4 or $\frac{1}{2}$ can earn M1 and A1 for a correct in in x^2 or x^4 .] Differentiate expression and evaluate f(0) and f'(0), where f'(x) = $kx(2+x^2)^{-1}$ State correct first term $\frac{1}{4}$ Obtain next two terms $-\frac{1}{4}x^2+\frac{3}{16}x^4$ decimal equivalents as coefficients.] Use correct cos 2 <i>A</i> formula, or equivalent pair of correct formulas, to obtain an equation in cos θ Obtain 3-term quadratic $6\cos^2\theta + \cos\theta - 5 = 0$, or equivalent Attempt to solve quadratic and reach $\theta = \cos^{-1}(a)$ Obtain answer 33.6° (or 33.5°) or 0.586 (or 0.585) radians Obtain answer 180° or π (or 3.14) radians and no others in range	3 A1+ n
The M mark i SR: Answers SR: Solutions implified term <i>OR</i> : Allow exact of [gnore answer 6]	is not earned by versions with unexpanded binomial coefficients such as $\binom{-2}{1}$.] given as $\frac{1}{4}(1-x^2+\frac{3}{4}x^4)$ earn M1B1A1.] involving $k(1+\frac{1}{2}x^2)^{-2}$, where $k = 2$, 4 or $\frac{1}{2}$ can earn M1 and A1 for a correct in in x^2 or x^4 .] Differentiate expression and evaluate f(0) and f'(0), where f'(x) = $kx(2+x^2)^{-1}$ State correct first term $\frac{1}{4}$ Obtain next two terms $-\frac{1}{4}x^2+\frac{3}{16}x^4$ decimal equivalents as coefficients.] Use correct cos 2 <i>A</i> formula, or equivalent pair of correct formulas, to obtain an equation in cos θ Obtain 3-term quadratic $6\cos^2\theta + \cos\theta - 5 = 0$, or equivalent Attempt to solve quadratic and reach $\theta = \cos^{-1}(a)$ Obtain answer 33.6° (or 33.5°) or 0.586 (or 0.585) radians Obtain answer 180° or π (or 3.14) radians and no others in range	3 A1+ n

Page 2	Mark Scheme Svilabus	Paper
	A AND AS LEVEL – NOVEMBER 2003 9709/8719	3
(i) EITHER	Obtain terms $\frac{1}{2\sqrt{x}}$ and $\frac{1}{2\sqrt{y}}\frac{dy}{dx}$, or equivalent	B1-
	Obtain answer in any correct form, e.g. $\frac{dy}{dx} = -\sqrt{\frac{y}{x}}$	
OR:	Using chain or product rule, differentiate $(\sqrt{a} - \sqrt{x})^2$	
	Obtain derivative in any correct form	
	Express $\frac{dy}{dx}$ in terms of x and y only in any correct form	
OR:	Expand $(\sqrt{a} - \sqrt{x})^2$, differentiate and obtain term $-2 \cdot \frac{\sqrt{a}}{2\sqrt{x}}$, or equivalent	
	Obtain term 1 by differentiating an expansion of the form $a + x \pm 2\sqrt{a}\sqrt{x}$	
	Express $\frac{dy}{dx}$ in terms of x and y only in any correct form	
(ii)	State or imply coordinates of P are $(\frac{1}{4}a, \frac{1}{4}a)$	
	Form equation of the tangent at P	
	Obtain 3 term answer $x + y = \frac{1}{2}a$ correctly, or equivalent	
5 (i)	Make recognizable sketch of $v = \sec x$ or $v = 3 - x^2$, for $0 < x < \frac{1}{2}\pi$	
~ /	Sketch the other graph correctly and justify the given statement	

[Award B1 for a sketch with positive *y*-intercept and correct concavity. A correct sketch of $y = \cos x$ can only earn B1 in the presence of $1/(3-x^2)$. Allow a correct single graph and its intersection with y = 0 to earn full marks.]

(ii)	State or imply equation $\alpha = \cos^{-1}(1/(3-\alpha^2)) \operatorname{or} \cos \alpha = 1/(3-\alpha^2)$	B1
	Rearrange this in the form given in part (i) i.e. sec $\alpha = 3 - \alpha^2$	B1

[Or work vice versa.]

(iii)	Use the iterative formula with $0 \le x_1 \le \sqrt{2}$	M1
	Obtain final answer 1.03	A1
	Show sufficient iterations to justify its accuracy to 2d.p. or show there is a sign	
	change in the interval (1.025, 1.035)	A1

[3]

[2]

Page 3	Mark Scheme	Syllabus	Paper	
	A AND AS LEVEL – NOVEMBER 2003	9709/8719	3	
6 (i)	Use product or quotient rule to find derivative			Μ
	Obtain derivative in any correct form			Al
	Equate derivative to zero and solve a linear equation in x			M
	Obtain answer $3\frac{1}{2}$ only			AI
				[4]
(ii)	State first step of the form $\pm \frac{1}{2}(3-x)e^{-2x} \pm \frac{1}{2}\int e^{-2x} dx$, wi	th or without	3	M1
	State correct first step e.g. $-\frac{1}{2}(3-x)e^{-2x} - \frac{1}{2}\int e^{-2x} dx$, or	r equivalent, v	vith or	
	without 3	•		A 1
	Complete the integration correctly obtaining $-\frac{1}{2}(3-x)e^{-\frac{1}{2}}$	$e^{-2x} + \frac{1}{2}e^{-2x}$, or	·equivalent	A1
	Substitute limits $x = 0$ and $x = 3$ correctly in the complete	$\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$	equivalent	M1
	Substitute mints $x = 0$ and $x = 5$ concerning in the complete Obtain answer $\frac{1}{5}(5 + e^{-6})$ or exact equivalent (allow e^{0}	$\frac{1}{1000}$ in place of 1)		
	Obtain answer $\frac{1}{4}(3+e^{-1})$, or exact equivalent (anow e	in place of 1)		AI
				[5]
7 (i) <i>EITHE</i>	R: Attempt multiplication of numerator and denominator by	3 + 2i.		
, (1) 211112	or equivalent	,		M1
	Simplify denominator to 13 or numerator to $13 + 26i$			A1
	Obtain answer $u = 1 + 2i$			A1
OR:	Using correct processes, find the modulus and argument	of <i>u</i>		M1
	Obtain modulus $\sqrt{5}$ (or 2.24) or argument tan ⁻¹ 2 (or 63.4	° or 1 11 radi	ans)	A1
	Obtain answer $u = 1 + 2i$	01 1111 1441	uno)	Al
				[3]
(ii)	Show the point U on an Argand diagram in a relatively c	orrect position	1	B1 ⁻
	Show a circle with centre U	I I I I I I I I I I I I I I I I I I I		B1
	Show a circle with radius consistent with 2			B1 ⁻
FC ()1				[3]
[1.1. on the v				
(iii)	State or imply relevance of the appropriate tangent from	O to the circle	e	B1
· •	Carry out a complete strategy for finding max $\arg z$			M1
	Obtain final answer 126.9° (2.21 radians)			A1
				[3]
[Drawing th	e appropriate tangent is sufficient for B1 $\sqrt{.}$]			r. 1
FA final ana	was abtained by measurement as ma M1 and 1			

[A final answer obtained by measurement earns M1 only.]

Page 4	Mark Scheme	Syllabus	Paper	
	A AND AS LEVEL – NOVEMBER 2003	9709/8719	3	
8 (i) $EITHER$.	Divide by denominator and obtain a quadratic remainder			M1
	Obtain $A = 1$			Al
	Use any relevant method to obtain <i>B</i> , <i>C</i> or <i>D</i>			M1
	Obtain one correct answer			A1
	Obtain $B = -1, C = 2, D = 0$			A1
OR:	Reduce RHS to a single fraction and identify numerator	with that of f(x	;)	M1
	Obtain A = 1			A1
	Use any relevant method to obtain B , C or D			
	Obtain one correct answer Obtain $P = 1$ $C = 2$ $D = 0$			
	Obtain $B = -1, C = 2, D = 0$			AI
				[5]
(ii)	Integrate and obtain terms $x - \ln (x - 1)$, or equivalent			B11
	Obtain third term $\ln(x^2 + 1)$, or equivalent			B1۱
	Substitute correct limits correctly in the complete integra	al		M1
	Obtain given answer following full and exact working			A1
$\prod P = 0 \text{ the}$	first D11/ is not available 1			[4]
[If $B = 0$ the [SR: If A is o	pointed in part (i), treat as if $A = 0$. Thus only M1M1 and I	B1√B1√M1 ar	e available.]	
9 (i)	Separate variables and attempt to integrate $\frac{1}{\sqrt{(P-A)}}$			M1
	Obtain term $2\sqrt{(P-A)}$			A1
	Obtain term $-kt$			A1
				[3]
(ii)	Use limits $P = 5A$, $t = 0$ and attempt to find constant c			M1
	Obtain $c = 4\sqrt{A}$, or equivalent			A1
	Use limits $P = 2A$, $t = 2$ and attempt to find k			M1
	Obtain given answer $k = \sqrt{A}$ correctly			A1
				[4]
(iii)	Substitute $P = A$ and attempt to calculate t			M1
	Obtain answer $t = 4$			A1
				[2]
(iv)	Using answers to part (ii), attempt to rearrange solution t	to give <i>P</i> in ter	rms of	
	A and t	-		M1
	Obtain $P = \frac{1}{4}A(4 + (4 - t)^2)$, or equivalent, having square	$d\sqrt{A}$		A1
				[2]

[For the M1, $\sqrt{(P-A)}$ must be treated correctly.]

Page 5	Mark Scheme	Syllabus	Paper	
	A AND AS LEVEL – NOVEMBER 2003	9709/8719	3	
10 (i)	Express general point of <i>l</i> or <i>m</i> in component form e.g. $(1 + 2s, s, -2 + 3s)$ or $(6 + t, -5 - 2t, 4 + t)$ Equate at least two corresponding pairs of components and attempt to solve for <i>s</i> or <i>t</i> Obtain <i>s</i> = 1 or <i>t</i> = -3 Verify that all three component equations are satisfied			B M A A
	Obtain position vector $3\mathbf{i} + \mathbf{j} + \mathbf{k}$ of intersection point, or e	equivalent		A [5
(ii) EITHER:	Use scalar product to obtain $2a + b + 3c = 0$ and $a - 2b +$ Solve and find one ratio e.g. $a : b$ State one correct ratio Obtain answer $a : b : c = 7 : 1 : -5$, or equivalent Substitute coordinates of a relevant point and values of a , equation of plane and calculate d Obtain answer $7x + y - 5z = 17$ or equivalent	c = 0 b and c in ge	eneral	B A A M A
OR:	Obtain answer $7x + y - 5z = 17$, or equivalent Using two points on <i>l</i> and one on <i>m</i> (or vice versa) state three simultaneous equations in <i>a</i> , <i>b</i> , <i>c</i> and <i>d</i> e.g. $3a + b + c = d$, $a - 2c = d$ and $6a - 5b + 4c = d$ Solve and find one ratio e.g. <i>a</i> : <i>b</i> State one correct ratio Obtain a ratio of three unknowns e.g. $a : b : c = 7 : 1 : -5$, or equivalent Use coordinates of a relevant point and found ratio to find fourth unknown e.g. <i>d</i> Obtain answer $7x + y - 5z = 17$, or equivalent		B M A M A	
OR:	Form a correct 2-parameter equation for the plane, e.g. $\mathbf{r} = \mathbf{i} - 2\mathbf{k} + \lambda(2\mathbf{i}+\mathbf{j}+3\mathbf{k}) + \mu(\mathbf{i}-2\mathbf{j}+\mathbf{k})$ State 3 equations in <i>x</i> , <i>y</i> , <i>z</i> , λ and μ State 3 correct equations Eliminate λ and μ Obtain equation in any correct unsimplified form Obtain $7x + y - 5z = 17$, or equivalent			B A M A A
OR:	Attempt to calculate vector product of vectors parallel to <i>i</i> Obtain two correct components of the product Obtain correct product, e.g. $7\mathbf{i} + \mathbf{j} - 5\mathbf{z}$ State that the plane has equation of the form $7x + y - 5z =$ Substitute coordinates of a relevant point and calculate <i>d</i> Obtain answer $7x + y - 5z = 17$, or equivalent	l and <i>m</i> d		M A A M A

[The follow through is on 3i + j + k only.]