UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

9709 MATHEMATICS

9709/33

Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9709	33

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9709	33

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4		Mark Scheme: Teachers' version	Syllabus	Paper	*
		GCE AS/A LEVEL – May/June 2012	9709	33	
EITHER:	Obta	in a correct unsimplified version of the x or x^2 term	of the expansion	n of	
	(4+	$3x)^{-\frac{1}{2}}$ or $(1+\frac{3}{4}x)^{-\frac{1}{2}}$		M1	
\$	State	correct first term $\frac{1}{2}$		B1	
(Obta	in the next two terms $-\frac{3}{16}x + \frac{27}{256}x^2$		A1 + A1	
OR:	Diffe	erentiate and evaluate $f(0)$ and $f'(0)$, where $f'(x) = k(4+3x)$	$)^{-\frac{3}{2}}$	M1	
5	State	correct first term $\frac{1}{2}$		B1	
(Obta	in the next two terms $-\frac{3}{16}x + \frac{27}{256}x^2$		A1 + A1	[4]
I	[Syn	abolic coefficients, e.g. $\begin{pmatrix} -\frac{1}{2} \\ 2 \end{pmatrix}$ are not sufficient for the M or	B mark.]		
Use law o	f the	logarithm of a power and a product or quotient and remove	logarithms	M1	
Obtain a c	corre	ct equation in any form, e.g. $\frac{2x+3}{r^2} = 3$		A1	
Solve 3-te	erm q	uadratic obtaining at least one root		M1	
Obtain fin	al ar	nswer 1.39 only		A1	[4]
Obtain $\frac{dx}{dt}$	$\frac{x}{\theta} = 2$	$2\cos 2\theta - 1$ or $\frac{dy}{d\theta} = -2\sin 2\theta + 2\cos \theta$, or equivalent		B1	
Use $\frac{\mathrm{d}y}{\mathrm{d}x} =$	$\frac{\mathrm{d}y}{\mathrm{d}\theta}$	$\frac{dx}{d\theta}$		M1	
Obtain $\frac{dy}{dx}$	$\frac{2}{c} = -\frac{1}{c}$	$\frac{-2\sin 2\theta + 2\cos \theta}{2\cos 2\theta - 1}$, or equivalent		A1	
•	•			M1	-
Obtain the	e giv	en answer following full and correct working		A1	[5]
	<i>EITHER</i> : <i>OR</i> : Use law of Obtain a constraint of Obtain $\frac{di}{dt}$ Use $\frac{dy}{dx} =$ Obtain $\frac{dy}{dt}$ At any sta	<i>EITHER</i> : Obta (4 + State Obta <i>OR</i> : Diffe State Obta [Sym Use law of the Obtain a correct Solve 3-term of Obtain final ar Obtain $\frac{dx}{d\theta} = 2$ Use $\frac{dy}{dx} = \frac{dy}{d\theta}$ Obtain $\frac{dy}{dx} = -$ At any stage u	GCE AS/A LEVEL – May/June 2012EITHER: Obtain a correct unsimplified version of the x or x^2 term of $(4+3x)^{-\frac{1}{2}}$ or $(1+\frac{3}{4}x)^{-\frac{1}{2}}$ State correct first term $\frac{1}{2}$ Obtain the next two terms $-\frac{3}{16}x + \frac{27}{256}x^2$ OR: Differentiate and evaluate f(0) and f'(0), where f'(x) = $k(4+3x)$ State correct first term $\frac{1}{2}$ Obtain the next two terms $-\frac{3}{16}x + \frac{27}{256}x^2$ Obtain the next two terms $-\frac{3}{16}x + \frac{27}{256}x^2$ [Symbolic coefficients, e.g. $\begin{pmatrix} -\frac{1}{2} \\ 2 \end{pmatrix}$ are not sufficient for the M or	GCE AS/A LEVEL - May/June 20129709EITHER: Obtain a correct unsimplified version of the x or x^2 term of the expansion $(4+3x)^{-\frac{1}{2}}$ or $(1+\frac{3}{4}x)^{-\frac{1}{2}}$ State correct first term $\frac{1}{2}$ Obtain the next two terms $-\frac{3}{16}x + \frac{27}{256}x^2$ OR: Differentiate and evaluate f(0) and f'(0), where f'(x) = $k(4+3x)^{-\frac{1}{2}}$ State correct first term $\frac{1}{2}$ Obtain the next two terms $-\frac{3}{16}x + \frac{27}{256}x^2$ [Symbolic coefficients, e.g. $(-\frac{1}{2})$ are not sufficient for the M or B mark.]Use law of the logarithm of a power and a product or quotient and remove logarithms Obtain a correct equation in any form, e.g. $\frac{2x+3}{x^2} = 3$ Solve 3-term quadratic obtaining at least one root Obtain final answer 1.39 onlyObtain $\frac{dx}{d\theta} = 2\cos 2\theta - 1$ or $\frac{dy}{d\theta} = -2\sin 2\theta + 2\cos \theta$, or equivalent $2\cos 2\theta - 1$, or equivalent At any stage use correct double angle formulae throughout	GCE AS/A LEVEL - May/June 2012970933 <i>EITHER</i> : Obtain a correct unsimplified version of the x or x^2 term of the expansion of $(4+3x)^{-\frac{1}{2}}$ or $(1+\frac{3}{4}x)^{-\frac{1}{2}}$ M1State correct first term $\frac{1}{2}$ B1Obtain the next two terms $-\frac{3}{16}x + \frac{27}{256}x^2$ A1 + A1OR: Differentiate and evaluate f(0) and f'(0), where f'(x) = $k(4+3x)^{-\frac{1}{2}}$ M1State correct first term $\frac{1}{2}$ B1Obtain the next two terms $-\frac{3}{16}x + \frac{27}{256}x^2$ A1 + A1Obtain the next two terms $-\frac{3}{16}x + \frac{27}{256}x^2$ A1 + A1[Symbolic coefficients, e.g. $\left(-\frac{1}{2}\right)^2$ are not sufficient for the M or B mark.]Use law of the logarithm of a power and a product or quotient and remove logarithmsM1Obtain a correct equation in any form, e.g. $\frac{2x+3}{x^2} = 3$ A1Solve 3-term quadratic obtaining at least one rootObtain $\frac{dx}{d\theta} = 2\cos 2\theta - 1$ or $\frac{dy}{d\theta} = -2\sin 2\theta + 2\cos \theta$, or equivalentB1Use $\frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta}$ M1Obtain $\frac{dx}{d\theta} = 2\cos 2\theta - 1$ or $\frac{dy}{d\theta} = -2\sin 2\theta + 2\cos \theta$, or equivalentB1Use $\frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta}$ M1Obtain $\frac{dx}{dx} = \frac{2\sin 2\theta + 2\cos \theta}{d\theta}$, or equivalentA1Obtain $\frac{dx}{dx} = \frac{2\sin 2\theta + 2\cos \theta}{2\cos 2\theta - 1}$, or equivalentA1Obtai

4	(i)	Use correct quotient or product rule	M1	
		Obtain correct derivative in any form, e.g. $\frac{2e^{2x}}{x^3} - \frac{3e^{2x}}{x^4}$	A1	
		Equate derivative to zero and solve a 2-term equation for non-zero x	M1	
		Obtain $x = \frac{3}{2}$ correctly	A1	[4]

(ii)	Carry out a method for determining the nature of a stationary point, e.g. test derivative		
	either side	M1	
	Show point is a minimum with no errors seen	A1	[2]

	Page 5		Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2012	9709	33	
5	(i)	Obtain ter	e for <i>x</i> , separate variables correctly and attempt integration or m ln <i>y</i> , or equivalent rm e^{-3t} , or equivalent	f both sides	M1 A1 A1	
			a constant, or use $t = 0$, $y = 70$ as limits in a solution	on containing terr		
		Obtain co	prrect solution in any form, e.g. $\ln y - \ln 70 = e^{-3t} - 1$		A1	
		Rearrange	e and obtain $y = 70\exp(e^{-3t} - 1)$, or equivalent		A1	[6]
	(ii)	•	swer to part (i), either express p in terms of t or use $e^{-3t} \rightarrow e^{-3t}$	0 to find the limiti	•	
		value of y	, 100		M1	
		Obtain an	swer $\frac{100}{e}$ from correct exact work		A1	[2]
6	(i)		(A + B) and tan 2A formulae to obtain an equation in tan x		M1	
			correct equation in tan x in any form		A1 M1	
			expression of the form $a \tan^2 x = b$ e given answer		M1 A1	[4]
	(ii)		k = 4 in the given expression and solve for x		M1	
		Obtain se [Ignore a	aswer, e.g. $x = 16.8^{\circ}$ cond answer, e.g. $x = 163.2^{\circ}$, and no others in the given intensivers outside the given interval. Treat answers in radia 1 from the marks for the angles.]		A1 A1 nd	[3]
	(iii)	Substitute	e $k = 2$, show tan ² $x < 0$ and justify given statement correctly	,	B1	[1]
7	(i)	•	e for x and dx throughout the integral $2u \cos u du$		M1 A1	
		Integrate	by parts and obtain answer of the form $au \sin u + b \cos u$, w $u \sin u + 2 \cos u$	here $ab \neq 0$	M1 A1	
		Use limits	s $u = 0$, $u = p$ correctly and equate result to 1 e given answer		M1 A1	[6]
	(ii)	Obtain fir	terative formula correctly at least once that answer $p = 1.25$	1 <i>.</i>	M1 A1	
			ficient iterations to 4 d.p. to justify its accuracy to 2 d.p., or the interval (1.245, 1.255)	show there is a si	gn A1	[3]

Pa	ige 6	Mark Scheme: Teachers' version	Syllabus	Paper	•
		GCE AS/A LEVEL – May/June 2012	9709	33	
(i)	State or ir	mply the form $A + \frac{B}{x+1} + \frac{C}{2x-3}$		B1	
		btain $A = 2$		B1	
		rect method for finding a constant		M1	
	Obtain B			A1	r.~
	Obtain C	= -1		A1	[5
(ii)	Obtain int	tegral $2x - 2\ln(x+1) - \frac{1}{2}\ln(2x-3)$		В3√	
	Substitute Obtain the [SR: If A in (ii		A0 in (i); B1∜B1√M1A0		[5
	[SR:For a	a solution starting with $\frac{B}{x+1} + \frac{Dx+E}{2x-3}$, give M1A1 for	or one of $B = -2$, $D = 4$,		
		-7 and A1 for the other two constants; then give B1B1			
	[SR:For a	a solution starting with $\frac{Fx+G}{x+1} + \frac{C}{2x-3}$ or with $\frac{Fx}{x+1}$	$+\frac{C}{2x-3}$, give M1A1 for		
	one o B1B	of $C = -1$, $F = 2$, $G = 0$ and A1 for the other constant	nts or constant; then give		

9 (i) Express general point of *l* or *m* in component form, i.e. $(3-\lambda, -2+2\lambda, 1+\lambda)$ or $(4+a\mu, 4+b\mu, 2-\mu)$ B1 Equate components and eliminate either λ or μ from a pair of equations M1 Eliminate the other parameter and obtain an equation in *a* and *b* M1 Obtain the given answer A1 [4]

(ii)	Using the correct process equate the scalar product of the direction vectors to zero	M1*	
	Obtain $-a+2b-1=0$, or equivalent	A1	
	Solve simultaneous equations for a or for b	M1(dep*)	
	Obtain $a = 3, b = 2$	A1	[4]

(iii) Substitute found values in component equations and solve for λ or for μ M1 Obtain answer $\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ from either $\lambda = 2$ or from $\mu = -1$ A1 [2]

© University of Cambridge International Examinations 2012

Pa	ge 7	Mark Scheme: Teachers' version	Syllabus	Paper	ſ
		GCE AS/A LEVEL – May/June 2012	9709	33	
(a)	EIT	HER:Eliminate <i>u</i> or <i>w</i> and obtain an equation in <i>w</i> or in <i>u</i>		M1	
		Obtain a quadratic in u or w, e.g. $u^2 - 4iu - 5 = 0$ or $w^2 + 4i$	w - 5 = 0	A1	
		Solve a 3-term quadratic for u or for w		M1	
	OR1		tain an equation ir	n w	
		or <i>u</i>	1	M1	
		Obtain a 2-term quadratic in u or w, e.g. $u^2 = -3 + 4i$		A1	
		Solve a 2-term quadratic for <i>u</i> or for <i>w</i>		M1	
	OR2	2: Using $u = a + ib$, $w = c + id$, equate real and imaginar	y parts and obtair	n 4	
		equations in a, b, c and d		M1	
		Obtain 4 correct equations		A1	
		Solve for <i>a</i> and <i>b</i> , or for <i>c</i> and <i>d</i>		M1	
	Obta	ain answer $u = 1 + 2i$, $w = 1 - 2i$		A1	
	Obta	ain answer $u = -1 + 2i$, $w = -1 - 2i$ and no other		A1	[
(b)	(i)	Show point representing $2 - 2i$ in relatively correct position		B1	
(~)	(-)	Show a circle with centre $2 - 2i$ and radius 2		B1√ [^]	
		Show line for arg $z = -\frac{1}{4}\pi$		B1	
		Show line for $\text{Re } z = 1$		B1	
		Shade the relevant region		B1	[
	<i>(</i> !)	-			
	(ii)	State answer $2 + \sqrt{2}$, or equivalent (accept 3.41)		B1	