PMT

June 2004

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 9709/03, 8719/03

MATHEMATICS AND HIGHER MATHEMATICS Paper 3 (Pure 3)

B1

B1

3

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2004	9709/8719	3
			•
Chaur correct	a_{1}		
Show correct	SKEICH IOF U $\leq x \leq \frac{1}{2}\pi$		

Show correct sketch for $\frac{1}{2}\pi < x < \frac{3}{2}\pi$ or $\frac{3}{2}\pi < x \le 2\pi$

Show completely correct sketch

[SR: for a graph with y = 0 when x = 0, π , 2π but otherwise of correct shape, award B1.]

2	EITHER:	State or imply non-modular inequality $(2x+1)^2 < x^2$ or corresponding quadratic		
		equation or pair of linear equations $(2x + 1) = \pm x$	B1	
		Expand and make a reasonable solution attempt at a 3-term quadratic, or solve two		
		linear equations	M1	
		Obtain critical values $x = -1$ and $x = -\frac{1}{3}$ only	A1	
		State answer $-1 < x < -\frac{1}{3}$	A1	
	OR:	Obtain the critical value $x = -1$ from a graphical method , or by inspection, or by		
		solving a linear inequality or equation	B1	
		Obtain the critical value $x = -\frac{1}{3}$ (deduct B1 from B3 if extra values are obtained)	B2	
		State answer $-1 < x < -\frac{1}{3}$	B1	4
		[Condone \leq for <; accept -0.33 for $-\frac{1}{3}$.]		

3	EITHER:	State $6y \frac{dy}{dx}$ as the derivative of $3y^2$	B1	
		State $\pm 4x \frac{dy}{dx} \pm 4y$ as the derivative of $-4xy$	B1	
		Equate attempted derivative of LHS to zero and solve for $\frac{dy}{dx}$	M1	
		Obtain answer 2	A1	
		[The M1 is conditional on at least one of the B marks being obtained. Allow any		
		combination of signs for the second B1.]		
	OR:	Obtain a correct expression for <i>y</i> in terms of <i>x</i>	B1	
		Differentiate using chain rule	M1	
		Obtain derivative in any correct form	A1	
		Substitute $x = 2$ and obtain answer 2 only	A1	4
		[The M1 is conditional on a reasonable attempt at solving the quadratic in y being ma	de.]	

	Page	2	Mark Scheme Syl	labus	Paper	1	
			A AND AS LEVEL – JUNE 2004 9709	9/8719	3]	
4	(i)	State	e or imply $2^{-x} = \frac{1}{y}$			B1	
		Obta	in 3-term quadratic e.g. $y^2 - y - 1 = 0$			B1	2
	(ii)	Solve	e a 3-term quadratic, obtaining 1 or 2 roots			M1	
		Obta	in answer $y = (1 + \sqrt{5})/2$, or equivalent			A1	
		Carry	y out correct method for solving an equation of the form $2^x = a$,	where a	> 0, reach	ing	
		a rati	o of logarithms			M1	
		Obta	in answer $x = 0.694$ only			A1	4
5	(i)	Make	e relevant use of formula for sin 2θ or cos 2θ			M1	
	()	Make	e relevant use of formula for $\cos 4\theta$			M1	
		Com	plete proof of the given result			A1	3
	(ii)	Integ	rate and obtain $\frac{1}{8}(\theta - \frac{1}{4}\sin 4\theta)$ or equivalent			B1	
		Use	limits correctly with an integral of the form $a\theta$ + $b\sin 4\theta$, where ab	b ≠ 0		M1	
		Obta	in answer $\frac{1}{8}(\frac{1}{3}\pi + \frac{\sqrt{3}}{8})$, or exact equivalent			A1	3
6	Sep	oarate	variables and attempt to integrate			M1	
	Obt	ain ter	rms $\frac{1}{2}\ln(y^3+1)$ and x, or equivalent			A1 + A1	
	Eva	luate	a constant or use limits $x = 0$, $y = 1$ with a solution containing term	$ms k \ln(y)$	$v^{3} + 1)$ and	Х,	
	or e	quival	lent			M1	
	Obt	ain an	y correct form of solution e.g. $\frac{1}{2}\ln(y^3+1) = x + \frac{1}{2}\ln 2$			A1√	
	Rea	arrang	e and obtain $y = (2e^{3x} - 1)^{\frac{1}{3}}$, or equivalent			A1	6
	[f.t.	is on I	<i>k</i> ≠ 0.]				
7	(i)	Evalı	uate cubic when $x = -1$ and $x = 0$			M1	
-	(-)	Justif	fy given statement correctly			A1	2
		[lf ca	Iculations are not given but justification uses correct statements	about sig	jns, award	l B1.]	
	(ii)	State	$x = \frac{2x^3 - 1}{3x^2 + 1}$, or equivalent			B1	

Rearrange this in the form $x^3 + x + 1 = 0$ (or vice versa) B1 2

P	age	3	Mark Scheme Syllabus	Paper		
			A AND AS LEVEL – JUNE 2004 9709/8719	3		
((iii)	Use th	the iterative formula correctly at least once		M1	
		Obtaiı	in final answer –0.68		A1	
		Show	v sufficient iterations to justify its accuracy to 2d.p., or show there is a sign	change in	ı the	
		interva	∕al (–0.685, –0.675)		A1	3
8	(i)	EITHE	IER: Solve the quadratic and use $\sqrt{-1} = i$		M1	
			Obtain roots $\frac{1}{2} + i \frac{\sqrt{3}}{2}$ and $\frac{1}{2} - i \frac{\sqrt{3}}{2}$ or equivalent		A1	
		OR:	Substitute $x + iy$ and solve for x or y		M1	
			Obtain correct roots		A1	2
	(ii)	State	e that the modulus of each root is equal to 1		B1√	
		State	e that the arguments are $\frac{1}{3}\pi$ and $-\frac{1}{3}\pi$ respectively	B´	I√ + B1√	3
		[Acce	ept degrees and $\frac{5}{3}\pi$ instead of $-\frac{1}{3}\pi$. Accept a modulus in the form $\sqrt{\frac{p}{a}}$ or	\sqrt{n} , where	9	
		p, q, r	<i>n</i> are integers. An answer which only gives roots in modulus-argument for	rm earns B	31 for both	n
		the im	nplied moduli and B1 for both the implied arguments.]			
	(iii)	EITHE	<i>IER</i> : Verify $z^3 = -1$ for each root	E	31 + B1	
	()	OR.	State $z^3 + 1 - (z + 1)(z^2 - z + 1)$	_	R1	
		077.	$\int dt dt = \int dt$		B1	
		UR:	Obtain $z^{o} = z^{-} - z$		B1 P1	2
			Justify the given statement		DI	2
9	(i)	State	e or imply $f(x) = \frac{A}{x + 1} + \frac{B}{x + 2} + \frac{C}{x + 1}$		B1	
		<i>ЕІТНІ</i>	x-1 $x-2$ $x+1$		М1	
			Obtain one of the values: $A = -1$, $B = 4$ and $C = -2$		A1	
			Obtain the remaining two values		A1	
		OR:	Obtain one value by inspection		B1	
			State a second value		B1	
			State the third value		B1	4
		[Apply	ly the same scheme to the form $\frac{A}{x-2} + \frac{Bx+C}{x^2-1}$ which has $A = 4$, $B = -3$ and	nd C = 1.]		

Page 4	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2004	9709/8719	3

- (ii) Use correct method to obtain the first two terms of the expansion of $(x-1)^{-1}$ or $(x-2)^{-1}$ or $(x+1)^{-1}$ M1 Obtain any correct unsimplified expansion of the partial fractions up to the terms in x^3
 - (deduct A1 for each incorrect expansion) $A1\sqrt{+} A1\sqrt{+} A1\sqrt{-}$ Obtain the given answer correctlyA1**5**

[Binomial coefficients involving -1, e.g. $\binom{-1}{1}$, are not sufficient for the M1 mark. The f.t. is on *A*, *B*, *C*.] [Apply a similar scheme to the alternative form of fractions in (i), awarding M1*A1 $\sqrt{A1}\sqrt{10}$ for the expansions, M1(dep*) for multiplying by Bx + C, and A1 for obtaining the given answer correctly.] [In the case of an attempt to expand $(x^2 + 7x - 6)(x - 1)^{-1}(x - 2)^{-1}(x + 1)^{-1}$, give M1A1A1A1 for the expansions and A1 for multiplying out and obtaining the given answer correctly.] [Allow attempts to multiply out $(x - 1)(x - 2)(x + 1)(-3 + 2x - \frac{3}{2}x^2 + \frac{11}{4}x^3)$, giving B1 for reduction to a product of two expressions correct up to their terms in x^3 , M1 for attempting to multiply out at least as far as terms in x^2 , A1 for a correct expansion up to terms in x^3 .] [Allow the use of Maclaurin, giving M1A1 $\sqrt{10}$ for f(0) = -3 and f'(0) = 2, A1 $\sqrt{10}$ for f"(0) = -3, A1 $\sqrt{10}$ for f"(0) = $\frac{33}{2}$, and A1 for obtaining the given answer correctly (f.t. is on *A*, *B*, *C* if used).]

10 (i) State *x*-coordinate of *A* is 1

- (ii) Use product or quotient ruleM1Obtain derivative in any correct form e.g. $-\frac{2\ln x}{x^3} + \frac{1}{x} \cdot \frac{1}{x^2}$ A1Equate derivative to zero and solve for ln xM1
 - Obtain $x = e^{\frac{1}{2}}$ or equivalent (accept 1.65)A1Obtain $y = \frac{1}{2e}$ or exact equivalent not involving lnA1**5**

[SR: if the quotient rule is misused, with a 'reversed' numerator or x^2 instead of x^4 in the denominator, award M0A0 but allow the following M1A1A1.]

(iii) Attempt integration by parts, going the correct wayM1 $Obtain - \frac{\ln x}{x} + \int \frac{1}{x} \cdot \frac{1}{x} dx$ or equivalentA1Obtain indefinite integral $-\frac{\ln x}{x} - \frac{1}{x}$ A1Use x-coordinate of A and e as limits, having integrated twiceM1Obtain exact answer $1 - \frac{2}{e}$, or equivalentA1If $u = \ln x$ is used, apply an analogous scheme to the result of the substitution.]

PMT

B1

1

6

	Page	e 5	Mark Scheme Syllabus Paper	
			A AND AS LEVEL – JUNE 2004 9709/8719 3	
11	(i)	EITH	<i>ER</i> : Obtain a vector in the plane e.g. \overrightarrow{PQ} = -3 i + 4 j + k	B1
			Use scalar product to obtain a relevant equation in a, b, c e.g.– $3a + 4b + c =$	0 or
			6a - 2b + c = 0 or $3a + 2b + 2c = 0$	M1
			State two correct equations in <i>a</i> , <i>b</i> , <i>c</i>	A1
			Solve simultaneous equations to obtain one ratio e.g. <i>a</i> : <i>b</i>	M1
			Obtain $a: b: c = 2:3:-6$ or equivalent	A1
			Obtain equation $2x + 3y - 6z = 8$ or equivalent	A1
			[The second M1 is also given if say <i>c</i> is given an arbitrary value and <i>a</i> or <i>b</i> is f	ound.
			The following A1 is then given for finding the correct values of <i>a</i> and <i>b</i> .]	
		OR:	Substitute for <i>P</i> , <i>Q</i> , <i>R</i> in equation of plane and state 3 equations in <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i>	B1
			Eliminate one unknown, e.g. d, entirely	M1
			Obtain 2 equations in 3 unknowns	A1
			Solve to obtain one ratio e.g. <i>a</i> : <i>b</i>	M1
			Obtain $a : b : c = 2 : 3 : -6$ or equivalent	A1
			Obtain equation $2x + 3y - 6z = 8$ or equivalent	A1
			[The first M1 is also given if say <i>d</i> is given an arbitrary value and two equations	s in
			two unknowns, e.g. <i>a</i> and <i>b</i> , are obtained. The following A1 is for two correct	
			equations. Solving to obtain one unknown earns the second M1 and the follow	ving
			A1 is for finding the correct values of <i>a</i> and <i>b</i> .]	
		OR	: Obtain a vector in the plane e.g. \overrightarrow{QR} = 6 i –2 j + k	B1
			Find a second vector in the plane and form correctly a 2-parameter equation for	or
			the plane	M1
			Obtain equation in any correct form e.g. $\mathbf{r} = \lambda(-3\mathbf{i} + 4\mathbf{j} + \mathbf{k}) + \mu(6\mathbf{i} - 2\mathbf{j} + \mathbf{k}) + \mathbf{i} - \mathbf{k}$	、 A1
			State 3 equations in x, y, z, λ , and μ	A1
			Eliminate λ and μ	M1
			Obtain equation $2x + 3y - 6z = 8$ or equivalent	A1
		OR	: Obtain a vector in the plane e.g. $\overrightarrow{PR} = 3\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$	B1
			Obtain a second vector in the plane and calculate the vector product of the two	C
			vectors, e.g. (-3i + 4j + k)×(3i + 2j + 2k)	M1
			Obtain 2 correct components of the product	A1
			Obtain correct product e.g. 6 i + 9 j –18 k or equivalent	A1
			Substitute in $2x + 3y - 6z = d$ and find d or equivalent	M1
			Obtain equation $2x + 3y - 6z = 8$ or equivalent	A1

Page 6	Mark Scheme Syllabus Paper	
	A AND AS LEVEL – JUNE 2004 9709/8719 3	
(ii) <i>EITHE</i>	<i>R</i> : State equation of <i>SN</i> is $\mathbf{r} = 3\mathbf{i} + 5\mathbf{j} - 6\mathbf{k} + \lambda(2\mathbf{i} + 3\mathbf{j} - 6\mathbf{k})$ or equivalent	В1√
	Express x, y, z in terms of λ e.g. (3 + 2 λ , 5 +3 λ , -6 -6 λ)	B1√
	Substitute in the equation of the plane and solve for λ	M1
	Obtain \overrightarrow{ON} = i + 2 j , or equivalent	A1
	Carry out method for finding SN	M1
	Show that <i>SN</i> = 7 correctly	A1
OR:	Letting $\overrightarrow{ON} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, obtain two equations in x, y, z by equating scalar	
	product of \overrightarrow{NS} with two of $\overrightarrow{PQ}, \overrightarrow{QR}, \overrightarrow{RP}$ to zero B1	√+ B1√
	Using the plane equation as third equation, solve for x , y , and z	M1
	Obtain \overrightarrow{ON} = i +2j, or equivalent	A1
	Carry out method for finding SN	M1
	Show that <i>SN</i> = 7 correctly	A1
OR:	Use Cartesian formula or scalar product of \overrightarrow{PS} with a normal vector to find SN	M1
	Obtain SN = 7	A1
	State a unit normal $\hat{\mathbf{n}}$ to the plane	В1√
	Use $\overrightarrow{ON} = \overrightarrow{OS} \pm 7\hat{\mathbf{n}}$	M1
	Obtain an unsimplified expression e.g. 3i + 5j –6k $\pm 7(\frac{2}{7}i + \frac{3}{7}j - \frac{6}{7}k)$	A1√
	Obtain \overrightarrow{ON} = i +2j, or equivalent, only	A1