

CAMBRIDGE

June 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 9709/03, 8719/03

MATHEMATICS AND HIGHER MATHEMATICS Paper 3 (Pure 3)

	Page 1	Mark Scheme	Syllabus	Paper
		A AND AS LEVEL – JUNE 2003	9709/8719	3
1	(i)	Use trig formulae to express <i>LHS</i> in terms of sin x ar Use cos 60° = sin 30° to reduce equation to given for	nd cos x rm cos $x = i$	M1 k M1
				[2]
	(ii)	State or imply that $k = -\frac{1}{\sqrt{3}}$ (accept -0.577 or -0.58)		A1
		Obtain answer x = 125.3° only [Answer must be in degrees; ignore answers outside	the given r	A1 ange.]
		[SR: if $k = \frac{1}{\sqrt{3}}$ is followed by $x = 54.7^{\circ}$, give A0A1 $\sqrt{3}$.]		
				[2]
2		State first step of the form $kxe^{2x} \pm \int ke^{2x} dx$		M1
		Complete the first step correctly Substitute limits correctly having attempted the furthe	er integratio	A1 n M1
		Obtain answer $\frac{1}{4}$ (e ² + 1) or exact equivalent of the financial having used e ⁰ = 1 throughout	orm <i>a</i> e ² + <i>b</i>	, A1
				[4]
3	EITHER	State or imply non-modular inequality $(x - 2)^2 < (3 - 2x)^2$) ² , or	
		corresponding equation Expand and make a reasonable solution attempt at a	a 2- or 3-ter	B1 m
		quadratic, or equivalent		M1
		State answer $x < 1$ only		A1
	OR	State the relevant linear equation for a critical value,		
		i.e. $2 - x = 3 - 2x$, or equivalent		B1
		Obtain critical value $x = 1$ State answer $x < 1$		B1
		State or imply by omission that no other answer exis	ts	B1
	OR	Obtain the critical value $x = 1$ from a graphical method	od, or by ins	pection,
		or by solving a linear inequality		B2
		State answer $x < 1$ State or imply by omission that no other answer exis	ts	B1 B1
				[4]

Page 2	Mark Scheme	Syllabus	Paper	
	A AND AS LEVEL – JUNE 2003	9709/8719	3	
4 (i) EITHER	State or imply that $x - 2$ is a factor of $f(x)$ Substitute 2 for x and equate to zero Obtain answer $a = 8$			B1 M1 A1
	[The statement $(x - 2)^2 = x^2 - 4x + 4$ earns B1.]			
OR	Commence division by $x^2 - 4x + 4$ and obtain partial of Complete the division and equate the remainder to z Obtain answer $a = 8$	quotient <i>x</i> ² · ero	+ 2x	B1 M1 A1
OR	Commence inspection and obtain unknown factor x^2 Obtain $4c = a$ and an equation in c Obtain answer $a = 8$	+ 2x + c		B1 M1 A1
				[3]
(ii) <i>EITHER</i>	Substitute <i>a</i> = 8 and find other factor $x^2 + 2x + 2$ by in or division State that $x^2 - 4x + 4 \ge 0$ for all <i>x</i> (condone > for \ge) Attempt to establish sign of the other factor Show that $x^2 + 2x + 2 > 0$ for all <i>x</i> and complete the p [An attempt to find the zeros of the other factor earns	nspection proof M1.]		B1 B1 M1 A1
OR	Equate derivative to zero and attempt to solve for x Obtain $x = -\frac{1}{2}$ and 2 Show correctly that $f(x)$ has a minimum at each of the Having also obtained and considered $x = 0$, complete	ese values e the proof		M1 A1 A1 A1
				[4]
5 (i)	State or imply $w = \cos \frac{2}{3} \pi + i \sin \frac{2}{3} \pi$ (allow decim	nals)		B1
	Obtain answer $uw = -\sqrt{3} - i$ (allow decimals)			В1√
	Multiply numerator and denominator of $\frac{u}{w}$ by -1 - in	$\sqrt{3}$, or equiv	valent	M1
	Obtain answer $\frac{u}{w} = \sqrt{3}$ - i (allow decimals)			A1
				[4]
(ii)	Show U on an Argand diagram correctly Show <i>A</i> and <i>B</i> in relatively correct positions			B1 B1√
				[2]
(iii)	Prove that $AB = UA$ (or UB), or prove that angle AU (or angle BAU) or prove, for example, that $AO = OB$ $AOB = 120^{\circ}$, or prove that one angle of triangle UAB Complete a proof that triangle UAB is equilateral	/B = angle / 3 and angle 3 equals 60	ABU)°	B1 B1

[2]

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709/8719	3

6 (i) EITHER	State or imply $f(x) \equiv A + B + C + C$	B1
	State or obtain $A = 1$	B1
	State or obtain $C = 8$	B1
	Use any relevant method to find <i>B</i>	M1
	Obtain value $B = 4$	A1
OR	State or imply $f(x) \equiv \underline{A} + \underline{Dx + E}$	
	$2x+1$ $(x-2)^2$	B1
	State or obtain $A = 1$	B1
	Use any relevant method to find <i>D</i> or <i>E</i>	M1
	Obtain value $D = 4$	A1
	Obtain value <i>E</i> = 0	A1

(ii) EITHER Use correct method to obtain the first two terms of the expansion of $(1 + 2x)^{-1}$ or $(x - 2)^{-2}$ or $(1 - \frac{1}{2}x)^{-1}$ or $(1 - \frac{1}{2}x)^{-2}$ M1 Obtain any correct sum of unsimplified expansions up to the terms in x^2 (deduct A1 for each incorrect expansion) Obtain the given answer correctly

[Unexpanded binomial coefficients involving -1 or -2, e.g. $\begin{pmatrix} -2 \\ 1 \end{pmatrix}$ are not

sufficient for the M1.]

[f.t. is on A, B, C, D, E.]

[Apply this scheme to attempts to expand $(9x^2 + 4)(1+2x)^{-1}(x - 2)^{-2}$, giving M1A2 for a correct product of expansions and A1 for multiplying out and reaching the given answer correctly.]

[Allow attempts to multiply out $(1 + 2x)(x - 2)^2 (1 - x + 5x^2)$, giving B1 for reduction to a product of two expressions correct up to their terms in x^2 , M1 for attempting to multiply out as far as terms in x^2 , A1 for a correct expansion, and A1 for obtaining $9x^2 + 4$ correctly.]

[SR: *B* or *C* omitted from the form of partial fractions. In part (i) give the first B1, and M1 for the use of a relevant method to obtain *A*, *B*, or *C*, but no further marks. In part (ii) only the M1 and $A1\sqrt{}$ for an unsimplified sum are available.]

[SR: *E* omitted from the form of partial fractions. In part (i) give the first B1, and M1 for the use of a relevant method to obtain *A* or *D*, but no further marks. In part (ii) award M1A2 $\sqrt{A1}$ as in the scheme.]

OR	Differentiate and evaluate f(0) and f'(0)	M1
	Obtain $f(0) = 1$ and $f'(0) = -1$	A1
	Differentiate and obtain $f''(0) = 10$	A1
	Form the Maclaurin expansion and obtain the given answer correctly	A1

[5]

	Page 4	Mark Scheme Syllabus	Paper	
		A AND AS LEVEL - JUNE 2003 9709/0719	3	
7	(i)	State or imply that $\frac{dx}{dt} = k (100 - x)$	B1	
		Justify $k = 0.02$	B1	
				[2]
	(ii)	Separate variables and attempt to integrate $\frac{1}{100-x}$	M1	
		Obtain term – In (100 - x), or equivalent	A1	
		Obtain term 0.02 <i>t</i> , or equivalent Use $x = 5$, $t = 0$ to evaluate a constant, or as limits	A1 M1	
		Obtain correct answer in any form, e.g. $-\ln(100 - x) = 0.02t - \ln 95$ Rearrange to give x in terms of t in any correct form,	5 A1	
		e.g. $x = 100 - 95exp(-0.02t)$	A1	
				[6]
		[SR: In (100 - x) for -In (100 - x). If no other error and $x = 100 - 98$ equivalent obtained, give M1A0A1M1A0A1 $$]	5exp(0.0	2 <i>t</i>) or
	(iii)	State that <i>x</i> tends to 100 as <i>t</i> becomes very large	B1	
				[1]
8	(i)	State derivative <u>1</u> - <u>2</u> , or equivalent	B1	
		$x = x^2$ Equate 2-term derivative to zero and attempt to solve for x Obtain coordinates of stationary point (2, ln 2 +1), or equivalent Determine by any method that it is a minimum point	M1 A1	+A1
		with no incorrect work seen	A1	
				[5]
		2		
	(ii)	State or imply the equation $\alpha = \frac{2}{3 - \ln \alpha}$	B1	
		Rearrange this as 3 = ln α + $\frac{2}{\alpha}$ (or vice versa)	B1	
		ά		[2]
	(:::)	Lies the iterative formula competity at least once	14	
	(111)	Obtain final answer 0.56	A1	
		Show sufficient iterations to justify its accuracy to 2 d.p., or show there is a sign change in the interval (0 555, 0 565)	۸1	
٥	(i)	State or imply a correct normal vector to either plane		[3]
3	(1)	e.g. $\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$ or $2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k}$	B1	
		Carry out correct process for evaluating the scalar product of both	N/1	
		Using the correct process for the moduli, divide the scalar product	IVI I	
		of the two normals by the product of their moduli and evaluate the	N 1 4	
		Obtain answer 40.4° (or 40.3°) or 0.705 (or 0.704) radians	A1	
		[Allow the obtuse answer 139.6° or 2.44 radians]		
				[4]

PMT

Page 5		Mark Scheme	Svlla	bus Par	per
		A AND AS LEVEL – JUNE 2003	9709/	8719 3	3
·					
(ii) EITHER	Carry out	a complete strategy for finding a	point on <i>l</i>		M1
	Obtain su	ch a point e.g. (0, 3, 2)			A1
	EITHER	Set up two equations for a direct $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ of l , e.g. $a + 2b - 2c = 1$	ion vector = 0		
		and $2a - 3b + 6c = 0$			B1
		Solve for one ratio, e.g. a:b			M1
		Obtain $a:b:c = 6: -10: -7$, or equiv	/alent		A1
	OR	State a correct answer, e.g. $\mathbf{r} = 3$	6 -7 -5)	10 j - 7 k)	A1√ ∆1
	ON	Subtract position vectors to obtain	o, -7, -5) in a direction ve	ctor for 1	M1
		Obtain $6i - 10j - 7k$, or equivalent	t		A1
		State a correct answer, e.g. $\mathbf{r} = 3$	β j + 2 k + λ (6 i - γ	10 j - 7k)	A1√
	OR	Attempt to find the vector produc	t of the two nor	nal vectors	₃ M1
		Obtain two correct components	L		A1
		State a correct answer e.g. $\mathbf{r} = 2$	ι Si+2kr+λ (6i-΄	10 i - 7k)	Α⊺ Δ1√
		State a correct answer, e.g. r – c) · 2K · 2 (01 -	10 j - 7 k)	
OR	Express of	one variable in terms of a second			M1
	Obtain a	correct simplified expression, e.g.	x = (9 - 3y)/5		A1
	Express t	he same variable in terms of the t	hird and form		N / 1
	Incorpora	te a correct simplified expression	ea x = (12 - 6	<i>z</i>)/7	
	in this eq	Jation	, o.g. x (12 o	<i></i> //1	A1
	Form a ve	ector equation for the line			M1
		$\begin{pmatrix} x \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix}$			
	State a co	prrect answer, e.g. $ v = 3 + -$	$-5/3 \mid \lambda$, or equ	uivalent	A1√
			-7/6		
			((0))		
OR	Express of	one variable in terms of a second			M1
	Obtain a	correct simplified expression, e.g.	y = (9 - 5x)/3		A1
	Express t	he third variable in terms of the se	econd		M1
	Obtain a	correct simplified expression, e.g.	z = (12 - 7x)/6		A1 M1
	i uni a ve	(\mathbf{r}) (0)	(1)		
	01.1				
	State a co	prrect answer, e.g. $ y = 3 + \lambda$	-5/3 , or eq	uivalent	ΑΊν
		$\begin{pmatrix} z \end{pmatrix}$ $\begin{pmatrix} 2 \end{pmatrix}$	(-7/6)		
					[6]
10 (i) EITHER	Make re	levant use of the correct sin 2A fo	ormula		M1
	Make re	levant use of the correct cos 2A f	ormula		M1
	Derive t	he given result correctly			A1
00	Mala	levent use of the tag 0.4 family			N / 4
UK	Make re	levant use of the tan 2A formula levant use of 1 + tan ² $A = \sec^2 A$	or $\cos^2 \Delta + \sin^2$	Δ = 1	₩1 M1
	Derive t	he given result correctly		71 - 1	A1
		<u> </u>			

[3]

Page 6	Mark Scheme	Syllabus	Paper
_	A AND AS LEVEL – JUNE 2003	9709/8719	3
(ii)	State or imply indefinite integral is In sin x, or equi	valent	B1
	Substitute correct limits correctly		M1
	Obtain given exact answer correctly		A1
			I
(iii) EITHE	R State indefinite integral of cos 2x is of the form k li	n sin 2x	M1
()	State correct integral $\frac{1}{2}$ In sin 2x		A1
	Substitute limits correctly throughout		M1
	Obtain answer 1/4 1n 3, or equivalent		A1
OR	State or obtain indefinite integral of cosec 2x is of	the form k In	tan x.
	or equivalent		, M1
	State correct integral $\frac{1}{2}$ In tan x, or equivalent		A1
	Substitute limits correctly		M1
	Obtain answer ¼ In 3, or equivalent		A1