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1 Solve the equation 3 tan(2x + 15◦) = 4 for 0◦ ≤ x ≤ 180◦. [4]

2 The equation of a curve is y = 3 cos 2x. The equation of a line is x + 2y = π. On the same diagram,

sketch the curve and the line for 0 ≤ x ≤ π. [4]

3 (i) Find the first 3 terms in the expansion of (2 − x)6 in ascending powers of x. [3]

(ii) Given that the coefficient of x2 in the expansion of (1 + 2x + ax2)(2 − x)6 is 48, find the value of

the constant a. [3]

4 The equation of a curve is y = x4 + 4x + 9.

(i) Find the coordinates of the stationary point on the curve and determine its nature. [4]

(ii) Find the area of the region enclosed by the curve, the x-axis and the lines x = 0 and x = 1. [3]

5

A

B

C
DO6 cm

The diagram shows a semicircle ABC with centre O and radius 6 cm. The point B is such that

angle BOA is 90◦ and BD is an arc of a circle with centre A. Find

(i) the length of the arc BD, [4]

(ii) the area of the shaded region. [3]

6 A curve is such that
dy

dx
= k − 2x, where k is a constant.

(i) Given that the tangents to the curve at the points where x = 2 and x = 3 are perpendicular, find

the value of k. [4]

(ii) Given also that the curve passes through the point (4, 9), find the equation of the curve. [3]
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7 The equation of a curve is y =
12

x2 + 3
.

(i) Obtain an expression for
dy

dx
. [2]

(ii) Find the equation of the normal to the curve at the point P (1, 3). [3]

(iii) A point is moving along the curve in such a way that the x-coordinate is increasing at a constant

rate of 0.012 units per second. Find the rate of change of the y-coordinate as the point passes

through P. [2]

8 The first term of an arithmetic progression is 8 and the common difference is d, where d ≠ 0. The first

term, the fifth term and the eighth term of this arithmetic progression are the first term, the second

term and the third term, respectively, of a geometric progression whose common ratio is r.

(i) Write down two equations connecting d and r. Hence show that r = 3

4
and find the value of d.

[6]

(ii) Find the sum to infinity of the geometric progression. [2]

(iii) Find the sum of the first 8 terms of the arithmetic progression. [2]

9 Relative to an origin O, the position vectors of the points A, B and C are given by

−−→
OA = ( 2

3

−6

) ,
−−→
OB = ( 0

−6

8

) and
−−→
OC = (−2

5

−2

) .

(i) Find angle AOB. [4]

(ii) Find the vector which is in the same direction as
−−→
AC and has magnitude 30. [3]

(iii) Find the value of the constant p for which
−−→
OA + p

−−→
OB is perpendicular to

−−→
OC. [3]

10 Functions f and g are defined by

f : x  → 2x + 1, x ∈ >, x > 0,

g : x  →
2x − 1

x + 3
, x ∈ >, x ≠ −3.

(i) Solve the equation gf(x) = x. [3]

(ii) Express f−1(x) and g−1(x) in terms of x. [4]

(iii) Show that the equation g−1(x) = x has no solutions. [3]

(iv) Sketch in a single diagram the graphs of y = f(x) and y = f−1(x), making clear the relationship

between the graphs. [3]
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