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1 Determine the set of values of the constant k for which the line y = 4x + k does not intersect the curve
y = x2. [3]

2 Find the area of the region enclosed by the curve y = 2
√

x, the x-axis and the lines x = 1 and x = 4.
[4]

3 (i) Find the first three terms in the expansion of (2 + u)5 in ascending powers of u. [3]

(ii) Use the substitution u = x + x2 in your answer to part (i) to find the coefficient of x2 in the

expansion of (2 + x + x2)
5
. [2]

4 The 1st term of an arithmetic progression is a and the common difference is d, where d ≠ 0.

(i) Write down expressions, in terms of a and d, for the 5th term and the 15th term. [1]

The 1st term, the 5th term and the 15th term of the arithmetic progression are the first three terms of
a geometric progression.

(ii) Show that 3a = 8d. [3]

(iii) Find the common ratio of the geometric progression. [2]

5 (i) Show that the equation 3 sin x tan x = 8 can be written as 3 cos2 x + 8 cos x − 3 = 0. [3]

(ii) Hence solve the equation 3 sin x tan x = 8 for 0◦ ≤ x ≤ 360◦. [3]

6

The three points A (3, 8), B (6, 2) and C (10, 2) are shown in the diagram. The point D is such that
the line DA is perpendicular to AB and DC is parallel to AB. Calculate the coordinates of D. [7]
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In the diagram, AB is an arc of a circle, centre O and radius r cm, and angle AOB = θ radians. The
point X lies on OB and AX is perpendicular to OB.

(i) Show that the area, A cm2, of the shaded region AXB is given by

A = 1
2
r2(θ − sin θ cos θ). [3]

(ii) In the case where r = 12 and θ = 1
6
π, find the perimeter of the shaded region AXB, leaving your

answer in terms of
√

3 and π. [4]

8 The equation of a curve is y = (2x − 3)3 − 6x.

(i) Express
dy
dx

and
d2y

dx2
in terms of x. [3]

(ii) Find the x-coordinates of the two stationary points and determine the nature of each stationary
point. [5]

9 A curve is such that
dy
dx

= 4 − x and the point P (2, 9) lies on the curve. The normal to the curve at P

meets the curve again at Q. Find

(i) the equation of the curve, [3]

(ii) the equation of the normal to the curve at P, [3]

(iii) the coordinates of Q. [3]
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The diagram shows a cube OABCDEFG in which the length of each side is 4 units. The unit vectors

i, j and k are parallel to
−−→
OA,

−−→
OC and

−−→
OD respectively. The mid-points of OA and DG are P and Q

respectively and R is the centre of the square face ABFE.

(i) Express each of the vectors
−−→
PR and

−−→
PQ in terms of i, j and k. [3]

(ii) Use a scalar product to find angle QPR. [4]

(iii) Find the perimeter of triangle PQR, giving your answer correct to 1 decimal place. [3]

11 The function f is defined by f : x �→ 2x2 − 8x + 11 for x ∈ �.

(i) Express f(x) in the form a(x + b)2 + c, where a, b and c are constants. [3]

(ii) State the range of f. [1]

(iii) Explain why f does not have an inverse. [1]

The function g is defined by g : x �→ 2x2 − 8x + 11 for x ≤ A, where A is a constant.

(iv) State the largest value of A for which g has an inverse. [1]

(v) When A has this value, obtain an expression, in terms of x, for g−1(x) and state the range of g−1.
[4]
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