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1 Find the coordinates of the points of intersection of the line y + 2x = 11 and the curve xy = 12. [4]

2 (i) Show that the equation 4 sin4 θ + 5 = 7 cos2 θ may be written in the form 4x2 + 7x − 2 = 0,
where x = sin2 θ . [1]

(ii) Hence solve the equation 4 sin4 θ + 5 = 7 cos2 θ , for 0◦ ≤ θ ≤ 360◦. [4]

3 (a) A debt of $3726 is repaid by weekly payments which are in arithmetic progression. The first
payment is $60 and the debt is fully repaid after 48 weeks. Find the third payment. [3]

(b) Find the sum to infinity of the geometric progression whose first term is 6 and whose second term
is 4. [3]

4 A curve is such that
dy
dx

= 3x2 − 4x + 1. The curve passes through the point (1, 5).
(i) Find the equation of the curve. [3]

(ii) Find the set of values of x for which the gradient of the curve is positive. [3]

5

The diagram shows a trapezium ABCD in which BC is parallel to AD and angle BCD = 90◦. The
coordinates of A, B and D are (2, 0), (4, 6) and (12, 5) respectively.

(i) Find the equations of BC and CD. [5]

(ii) Calculate the coordinates of C. [2]
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6

The diagram shows the sector OPQ of a circle with centre O and radius r cm. The angle POQ is
θ radians and the perimeter of the sector is 20 cm.

(i) Show that θ = 20
r

− 2. [2]

(ii) Hence express the area of the sector in terms of r. [2]

(iii) In the case where r = 8, find the length of the chord PQ. [3]

7

The diagram shows a triangular prism with a horizontal rectangular base ADFC, where CF = 12 units
and DF = 6 units. The vertical ends ABC and DEF are isosceles triangles with AB = BC = 5 units.
The mid-points of BE and DF are M and N respectively. The origin O is at the mid-point of AC.

Unit vectors i, j and k are parallel to OC, ON and OB respectively.

(i) Find the length of OB. [1]

(ii) Express each of the vectors
−−−→
MC and

−−−→
MN in terms of i, j and k. [3]

(iii) Evaluate
−−−→
MC.

−−−→
MN and hence find angle CMN, giving your answer correct to the nearest degree.

[4]
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8 A solid rectangular block has a base which measures 2x cm by x cm. The height of the block is y cm
and the volume of the block is 72 cm3.

(i) Express y in terms of x and show that the total surface area, A cm2, of the block is given by

A = 4x2 + 216
x

. [3]
Given that x can vary,

(ii) find the value of x for which A has a stationary value, [3]

(iii) find this stationary value and determine whether it is a maximum or a minimum. [3]

9

The diagram shows points A (0, 4) and B (2, 1) on the curve y = 8
3x + 2

. The tangent to the curve at B

crosses the x-axis at C. The point D has coordinates (2, 0).
(i) Find the equation of the tangent to the curve at B and hence show that the area of triangle BDC

is 4
3
. [6]

(ii) Show that the volume of the solid formed when the shaded region ODBA is rotated completely
about the x-axis is 8π. [5]

10 Functions f and g are defined by

f : x �→ 2x − 5, x ∈ �,

g : x �→ 4
2 − x

, x ∈ �, x ≠ 2.

(i) Find the value of x for which fg(x) = 7. [3]

(ii) Express each of f−1(x) and g−1(x) in terms of x. [3]

(iii) Show that the equation f−1(x) = g−1(x) has no real roots. [3]

(iv) Sketch, on a single diagram, the graphs of y = f(x) and y = f−1(x), making clear the relationship
between these two graphs. [3]
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