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1 Find the coordinates of the point at which the perpendicular bisector of the line joining �2, 7� to

�10, 3� meets the x-axis. [5]

2 Find the coefficient of x2 in the expansion of �1 + x2�
@

x

2
− 4

x

A6

. [5]

3 The reflex angle 1 is such that cos1 = k, where 0 < k < 1.

(i) Find an expression, in terms of k, for

(a) sin 1, [2]

(b) tan1. [1]

(ii) Explain why sin 21 is negative for 0 < k < 1. [2]

4

1 rad

O

A B

X

r cm

The diagram shows a sector of a circle with radius r cm and centre O. The chord AB divides the

sector into a triangle AOB and a segment AXB. Angle AOB is 1 radians.

(i) In the case where the areas of the triangle AOB and the segment AXB are equal, find the value

of the constant p for which 1 = p sin 1. [2]

(ii) In the case where r = 8 and 1 = 2.4, find the perimeter of the segment AXB. [3]

5 (i) Prove the identity
1

cos1 − cos1
1 + sin 1 � tan1. [4]

(ii) Solve the equation
1

cos1 − cos1
1 + sin1 + 2 = 0 for 0Å ≤ 1 ≤ 360Å. [3]

6 The 1st, 2nd and 3rd terms of a geometric progression are the 1st, 9th and 21st terms respectively

of an arithmetic progression. The 1st term of each progression is 8 and the common ratio of the

geometric progression is r, where r ≠ 1. Find

(i) the value of r, [4]

(ii) the 4th term of each progression. [3]
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7

A

D

C

B

The diagram shows a trapezium ABCD in which BA is parallel to CD. The position vectors of A, B

and C relative to an origin O are given by
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(i) Use a scalar product to show that AB is perpendicular to BC. [3]

(ii) Given that the length of CD is 12 units, find the position vector of D. [4]

8 The equation of a curve is such that
d2y

dx2
= 2x − 1. Given that the curve has a minimum point at

�3, −10�, find the coordinates of the maximum point. [8]

9

x

y

O

P �3, 7�
y = 8 − ï�4 − x�

The diagram shows part of the curve y = 8 − ��4 − x� and the tangent to the curve at P �3, 7�.

(i) Find expressions for
dy

dx
and Ó y dx. [5]

(ii) Find the equation of the tangent to the curve at P in the form y = mx + c. [2]

(iii) Find, showing all necessary working, the area of the shaded region. [4]
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10 Functions f and g are defined by

f : x  → 2x − 3, x ∈ >,

g : x  → x2 + 4x, x ∈ >.

(i) Solve the equation ff�x� = 11. [2]

(ii) Find the range of g. [2]

(iii) Find the set of values of x for which g�x� > 12. [3]

(iv) Find the value of the constant p for which the equation gf�x� = p has two equal roots. [3]

Function h is defined by h : x  → x2 + 4x for x ≥ k, and it is given that h has an inverse.

(v) State the smallest possible value of k. [1]

(vi) Find an expression for h−1�x�. [4]
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