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1 The coefficient of x3 in the expansion of (a + x)5 + (1 − 2x)6, where a is positive, is 90. Find the value

of a. [5]

2 Find the set of values of m for which the line y = mx + 4 intersects the curve y = 3x2 − 4x + 7 at two

distinct points. [5]

3 The line
x

a
+ y

b
= 1, where a and b are positive constants, meets the x-axis at P and the y-axis at Q.

Given that PQ = √(45) and that the gradient of the line PQ is −1
2
, find the values of a and b. [5]

4 (a) Differentiate
2x3 + 5

x
with respect to x. [3]

(b) Find ã (3x − 2)5 dx and hence find the value of ã
1

0

(3x − 2)5 dx. [4]
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In the diagram, OABCDEFG is a rectangular block in which OA = OD = 6 cm and AB = 12 cm. The

unit vectors i, j and k are parallel to
−−→
OA,

−−→
OC and

−−−→
OD respectively. The point P is the mid-point of

DG, Q is the centre of the square face CBFG and R lies on AB such that AR = 4 cm.

(i) Express each of the vectors
−−→
PQ and

−−→
RQ in terms of i, j and k. [3]

(ii) Use a scalar product to find angle RQP. [4]

6 (a) A geometric progression has a third term of 20 and a sum to infinity which is three times the first

term. Find the first term. [4]

(b) An arithmetic progression is such that the eighth term is three times the third term. Show that

the sum of the first eight terms is four times the sum of the first four terms. [4]
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In the diagram, AB is an arc of a circle, centre O and radius 6 cm, and angle AOB = 1
3
π radians. The

line AX is a tangent to the circle at A, and OBX is a straight line.

(i) Show that the exact length of AX is 6
√

3 cm. [1]

Find, in terms of π and
√

3,

(ii) the area of the shaded region, [3]

(iii) the perimeter of the shaded region. [4]

8 (i) Prove the identity ( 1

sin θ
− 1

tan θ
)2 ≡ 1 − cos θ

1 + cos θ
. [3]

(ii) Hence solve the equation ( 1

sin θ
− 1

tan θ
)2 = 2

5
, for 0◦ ≤ θ ≤ 360◦. [4]

9 A curve is such that
dy

dx
= 2√

x
− 1 and P (9, 5) is a point on the curve.

(i) Find the equation of the curve. [4]

(ii) Find the coordinates of the stationary point on the curve. [3]

(iii) Find an expression for
d2y

dx2
and determine the nature of the stationary point. [2]

(iv) The normal to the curve at P makes an angle of tan−1 k with the positive x-axis. Find the value

of k. [2]

10 Functions f and g are defined by

f : x  → 3x − 4, x ∈ >,

g : x  → 2(x − 1)3 + 8, x > 1.

(i) Evaluate fg(2). [2]

(ii) Sketch in a single diagram the graphs of y = f(x) and y = f −1(x), making clear the relationship

between the graphs. [3]

(iii) Obtain an expression for g ′(x) and use your answer to explain why g has an inverse. [3]

(iv) Express each of f −1(x) and g−1(x) in terms of x. [4]
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