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1 A curve has equation y = k
x

. Given that the gradient of the curve is −3 when x = 2, find the value of

the constant k. [3]

2 Solve the equation

sin 2x + 3 cos 2x = 0,

for 0◦ ≤ x ≤ 180◦. [4]

3 Each year a company gives a grant to a charity. The amount given each year increases by 5% of its
value in the preceding year. The grant in 2001 was $5000. Find

(i) the grant given in 2011, [3]

(ii) the total amount of money given to the charity during the years 2001 to 2011 inclusive. [2]

4 The first three terms in the expansion of (2 + ax)n, in ascending powers of x, are 32 − 40x + bx2. Find
the values of the constants n, a and b. [5]

5 The curve y2 = 12x intersects the line 3y = 4x + 6 at two points. Find the distance between the two
points. [6]

6

In the diagram, ABC is a triangle in which AB = 4 cm, BC = 6 cm and angle ABC = 150◦. The line
CX is perpendicular to the line ABX.

(i) Find the exact length of BX and show that angle CAB = tan−1( 3
4 + 3

√
3
). [4]

(ii) Show that the exact length of AC is
√(52 + 24

√
3) cm. [2]
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7

The diagram shows a circle with centre O and radius 8 cm. Points A and B lie on the circle. The
tangents at A and B meet at the point T , and AT = BT = 15 cm.

(i) Show that angle AOB is 2.16 radians, correct to 3 significant figures. [3]

(ii) Find the perimeter of the shaded region. [2]

(iii) Find the area of the shaded region. [3]

8

The diagram shows the roof of a house. The base of the roof, OABC, is rectangular and horizontal
with OA = CB = 14 m and OC = AB = 8 m. The top of the roof DE is 5 m above the base and
DE = 6 m. The sloping edges OD, CD, AE and BE are all equal in length.

Unit vectors i and j are parallel to OA and OC respectively and the unit vector k is vertically upwards.

(i) Express the vector
−−→
OD in terms of i, j and k, and find its magnitude. [4]

(ii) Use a scalar product to find angle DOB. [4]
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9 A curve is such that
dy
dx

= 4√(6 − 2x) , and P (1, 8) is a point on the curve.

(i) The normal to the curve at the point P meets the coordinate axes at Q and at R. Find the
coordinates of the mid-point of QR. [5]

(ii) Find the equation of the curve. [4]

10

The diagram shows the curve y = x3 − 3x2 − 9x + k, where k is a constant. The curve has a minimum
point on the x-axis.

(i) Find the value of k. [4]

(ii) Find the coordinates of the maximum point of the curve. [1]

(iii) State the set of values of x for which x3 − 3x2 − 9x + k is a decreasing function of x. [1]

(iv) Find the area of the shaded region. [4]

11 Functions f and g are defined by

f : x �→ k − x for x ∈ �, where k is a constant,

g : x �→ 9
x + 2

for x ∈ �, x ≠ −2.

(i) Find the values of k for which the equation f(x) = g(x) has two equal roots and solve the equation
f(x) = g(x) in these cases. [6]

(ii) Solve the equation fg(x) = 5 when k = 6. [3]

(iii) Express g−1(x) in terms of x. [2]
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