

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/13 October/November 2016

Paper 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	13

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ↓[↑] implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper	
	Cambridge International AS/A Level – October/November 2016	9709	13	

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through ↓" " marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page	Mark Scheme	Syllabus Paper				
		Cambridge International AS/A Level – October	16 9709 13				
1	kx^2	$-3x = x - k \implies kx^2 - 4x + k(=0)$	M1		Eliminate <i>y</i> and rearrange into 3- term quad		
	(-4	$(k)^{2} - 4(k)(k)$ soi	M1		$b^2 - 4ac$.		
	<i>k</i> >	2 , $k < -2$ cao Allow $(2, \infty)$ etc. Allow $2 < k < -k$	A1	[3]			
2	(+/	$-)20 \times 3^3(x^3), 10a^3(x^3)$ soi	B1B1		Each term can include x^3		
	-54	$0+10a^3=100$ oe	M1		Must have 3 terms and include		
	<i>a</i> =	4	A1	[4]	a^3 and 100		
3	4sii	$^{2}x = 6\cos^{2}x \Longrightarrow \tan^{2}x = \frac{6}{4}$ or $4\sin^{2}x = 6(1 - \sin^{2}x)$	M1		$Or 4\left(1-\cos^2 x\right) = 6\cos^2 x$		
	[tan $x=2$ And	$x = (\pm)1.225 \text{ or } \sin x = (\pm)0.7746 \text{ or } \cos x = (\pm)0.6325]$ 0.8 (Allow 0.886 (rad)) ther angle correct	A1 A1√		Or any other angle correct Ft from 1st angle (Allow radians) All 4 angles correct in degrees		
	<i>x</i> =	50.8°, 129.2°, 230.8°, 309.2° [0.886, 2.25/6, 4.03, 5.40 (rad)]	A1	[4]	An + angles concer in degrees		
4	f'(:	$= 3x^2 - 6x - 9 \text{soi}$	B1				
	Atte	mpt to solve $f'(x) = 0$ or $f'(x) > 0$ or $f'(x) \ge 0$ soi	M1				
	(3)	(x-3)(x+1) or 3,-1 seen or 3 only seen	A1		With or without equality/inequality signs		
	Lea	t possible value of <i>n</i> is 3. Accept $n = 3$. Accept $n \ge 3$	A1	[4]	Must be in terms of <i>n</i>		
5 ((i) cos	$0.9 = OE / 6$ or $= \sin\left(\frac{\pi}{2} - 0.9\right)$ oe	M1		Other methods possible		
	OE	$= 6\cos 0.9 = 3.73$ oe AG	A1	[2]			
(i	ii) Use	of $(2\pi - 1.8)$ or equivalent method	M1		Expect 4.48		
	Are	a of large sector $=\frac{1}{2}\times 6^2 \times (2\pi - 1.8)$ oe	M1		Or $\pi 6^2 - \frac{1}{2} 6^2 1.8$. Expect 80.70 Expect 12.52		
	Are	a of small sector $\frac{1}{2} \times 3.73^2 \times 1.8$ l area = 80.7(0) + 12.5(2) = 93.2	M1		Other methods possible		
	100	1 area = 00.7(0) + 12.3(2) = 73.2		[4]			
6 ((i) $\frac{2+}{2}$	$\frac{x}{x} = n \implies x = 2n - 2$	B1		No MR for (½(2+ <i>n</i>), ½(<i>m</i> – 6))		
	$\frac{m+1}{2}$	$\frac{y}{2} = -6 \implies y = -12 - m$	B1	[2]	Expect $(2n-2, -12-m)$		

Page 5		Mark Scheme	Syllabus Paper				
		Cambridge International AS/A Level – October	ge International AS/A Level – October/November 2016				
(ii)	Sub the $\frac{m+6}{2}$	<i>eir x</i> , <i>y</i> into $y = x + 1 \rightarrow -12 - m = 2n - 2 + 1$ = -1 oe Not nested in an equation	M1* B1		Expect $m + 2n = -11$ Expect $m - n = -8$		
	2-n Elimin $m = -9$	tate a variable $\theta, n = -1$	DM1 A1A1	[5]	Note: other methods possible		
7 (i)	AB.A(AB.AI AC.AI	$C = 3 - 2 - 1 = 0 \text{ hence perpendicular or } 90^{\circ}$ $D = 3 + 4 - 7 = 0 \text{ hence perpendicular or } 90^{\circ}$ $D = 1 - 8 + 7 = 0 \text{ hence perpendicular or } 90^{\circ} \text{ AG}$	B1 B1 B1	[3]	3-2-1 or sum of prods etc must be seen Or single statement: mutually perpendicular or 90° seen at least once.		
(ii)	Area $A = \frac{1}{2}\sqrt{1}$ Vol. =	$ABC = (\frac{1}{2})\sqrt{3^{2} + 1^{2} + 1^{2}} \times \sqrt{1^{2} + (-2)^{2} + (-1)^{2}}$ $1 \times \sqrt{6}$ $\frac{1}{3} \times \text{their } \Delta ABC \times \sqrt{1^{2} + 4^{2} + (-7)^{2}}$	M1 A1 M1		Expect ¹ ⁄2√66		
	$=\frac{1}{6}\sqrt{6}$	$56 \times \sqrt{66} = 11$	A1	[4]	Not 11.0		
8 (i)	(2x+3)	$3)^{2} + 1$ Cannot score retrospectively in (iii)	B1B1B1	[3]	For $a = 2, b = 3, c = 1$		
(ii)	g(x) =	=2x+3 cao	B1	[1]	In (ii),(iii) Allow if from $4\left(x+\frac{3}{2}\right)^2+1$		
(iii)	y = (2	$(x+3)^2 + 1 \Rightarrow 2x + 3 = (\pm)\sqrt{y-1}$ or ft from (i)	M1		Or with x/y transposed.		
	$x = (\pm$	$\frac{1}{2}\sqrt{y-1} - \frac{3}{2}$ or ft from (i)	M1		Or with <i>x/y</i> transposed Allow sign errors.		
	$(fg)^{-1}$	$(x) = \frac{1}{2}\sqrt{x-1} - \frac{3}{2}$ cao Note alt. method $g^{-1}f^{-1}$	A1		Must be a function of x . Allow y		
	Domai	n is $(x) > 10$	B1	[4]	Allow (10, ∞), 10 < x < ∞ etc. but not with y or f or g involved. Not ≥ 10		
	ALT. 1	method for first 3 marks: to obtain $e^{-1} \left[f^{-1}(x) \right]$	*M1				
	$\sigma^{-1} = 1$	$\frac{1}{2}(x-3), f^{-1} = \sqrt{x-1}$	DM1		Both required		
	A1 for	$\frac{1}{2}\sqrt{x-1} - \frac{3}{2}$	A1		1		

	Page 6 Mark Scheme					Syllabus	Paper	
			Cambridge International AS/A Level – October/	/Novembe	er 20	16 9709	13	
9	(a)	$\frac{6}{1-r} =$	$=\frac{12}{1+r}$	M1				
		$r = \frac{1}{3}$		A1				
		<i>S</i> = 9		A1	[3]			
	(b)	$\frac{13}{2}$ [20	$\cos\theta + 12\sin^2\theta \Big] = 52$	M1*		Use of correct f AP	ormula for s	um of
		$2\cos\theta$	$\theta + 12(1 - \cos^2\theta) = 8 \rightarrow 6\cos^2\theta - \cos\theta - 2(=0)$	DM1		Use $s^2 = 1 - c^2$ term quad	& simplify (to 3-
		$\cos\theta$	= 2/3 or $-1/2$ soi	A1		A agant 0 268	2	for
		$\theta = 0.3$	841 , 2.09 Dep on previous A1	A1A1	[5]	48.2°, 120° Extr range –1	a solutions i	in
10	(i)	at $x =$	$a^{2}, \frac{dy}{dx} = \frac{2}{a^{2}} + \frac{1}{a^{2}} \operatorname{or} 2a^{-2} + a^{-2} \left(= \frac{3}{a^{2}} \operatorname{or} 3a^{-2} \right)$	B1		$\frac{2}{a^2} + \frac{1}{a^2} \text{ or } 2a^-$	$a^2 + a^{-2}$ seen	L
		y-3=	$= \frac{3}{a^2} (x - a^2) \text{ or } y = \frac{3}{a^2} x + c \to 3 = \frac{3}{a^2} a^2 + c$	M1		Through $(a^2,3)$ grad as f(a)	& with the	ir
		$y = \frac{3}{a^2}$	$\frac{1}{2}x$ or $3a^{-2}x$ cao	A1	[3]			
((ii)	(y) =	$\frac{2}{a}\frac{x^{\frac{1}{2}}}{\frac{1}{2}} + \frac{ax^{-\frac{1}{2}}}{-\frac{1}{2}} (+c)$	B1B1				
		sub x	$=a^2$, $y=3$ into $\int dy/dx$	M1		c must be presented as $3 - 4 - 2 + c$	nt. Expect	
		<i>c</i> = 1	$(y = \frac{4x^{2}}{a} - 2ax^{-\frac{1}{2}} + 1)$	A1	[4]	J- - 2+C		
(i	iii)	sub x	=16, $y=8 \rightarrow 8 = \frac{4}{a} \times 4 - 2a \times \frac{1}{4} + 1$	*M1		Sub into <i>their</i> y		
		$a^{2} + 1$ a = 2	4a - 32(=0)	A1 A1		Allow –16 in ac	ldition	
		A = (4	$(10, \delta) AB = (12 + 5^{-} \rightarrow AB = 15)$	DMIAI	[5]			

P	Page 7 Mark Scheme			Syllabus	Paper		
		Cambridge International AS/A Level – October/November 2016		9709	13		
-							
(i)	Attem	Attempt diffn. and equate to $0 \frac{dy}{dx} = -k(kx-3)^{-2} + k = 0$		M	ust contain ($kx - 3)^{-2} + 0$	other
	(kx-3)	$k^{2} = 1$ or $k^{3}x^{2} - 6k^{2}x + 8k(=0)$	DM1	Si	Simplify to a quadratic		
	$x = \frac{2}{k}$	or $\frac{4}{k}$	*A1*A1	L	Legitimately obtained		
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} =$	$2k^2\left(kx-3\right)^{-3}$	B1 √ [^]	Ft	Ft must contain $Ak^2(kx-3)^{-3}$		
	When	$x = \frac{2}{k}, \frac{d^2 y}{dx^2} = (-2k^2) < 0$ MAX All previous	DB1	w C ei	where <i>A</i> >0 Convincing alt. methods (value either side) must show which		
	When	$x = \frac{4}{k}, \frac{d^2 y}{dx^2} = (2k^2) > 0$ MIN working correct	DB1	va x	lues used & $k = 3/k$	cannot use	
				[7]			
(ii)	$V = (\pi$	$\int \left[(x-3)^{-1} + (x-3) \right]^2 dx$	* M 1	A	ttempt to expa	and y^2 and the set of the set	hen
	$=(\pi)$	$[(x-3)^{-2} + (x-3)^{2} + 2]dx$	A1		legrate		
	$=(\pi)$	$-(x-3)^{-1} + \frac{(x-3)^3}{3}(+2x)$ Condone missing 2x	A1	O Г	r	3	Г
					$-(x-3)^{-1}+\frac{x}{3}$	$\frac{3}{3} - 3x^2 + 9x$	+2x
	$=(\pi)$	$\left[1 - \frac{1}{3} + 4 - \left(\frac{1}{3} - 9 + 0\right)\right]$	DM1	A	pply limits 0–	→2	
	$=40\pi$	/ 3 oe or 41.9	A1	2 [5] M	missing → 28 1A0A1M1A0	$8\pi/3$ scores	5
	(i) (ii)	(i) Attempt $(kx - 3)$ $x = \frac{2}{k}$ $\frac{d^2 y}{dx^2} =$ When When When $When$ $= (\pi) \int_{a}^{b} = (\pi) \int_{a$	(i) Attempt diffn. and equate to $0 \frac{dy}{dx} = -k(kx-3)^{-2} + k = 0$ $(kx-3)^2 = 1 \text{ or } k^3x^2 - 6k^2x + 8k(=0)$ $x = \frac{2}{k} \text{ or } \frac{4}{k}$ $\frac{d^2y}{dx^2} = 2k^2(kx-3)^{-3}$ When $x = \frac{2}{k}, \frac{d^2y}{dx^2} = (-2k^2) < 0$ MAX All previous When $x = \frac{4}{k}, \frac{d^2y}{dx^2} = (2k^2) > 0$ MIN working correct (ii) $V = (\pi) \int [(x-3)^{-1} + (x-3)]^2 dx$ $= (\pi) \int [(x-3)^{-2} + (x-3)^2 + 2] dx$ $= (\pi) \left[-(x-3)^{-1} + \frac{(x-3)^3}{3}(+2x) \right]$ Condone missing $2x$ $= (\pi) \left[1 - \frac{1}{3} + 4 - (\frac{1}{3} - 9 + 0) \right]$ $= 40\pi/3$ oe or 41.9	Page 7 Mark Scheme Cambridge International AS/A Level – October/November (i) Attempt diffn. and equate to $0 \frac{dy}{dx} = -k(kx-3)^{-2} + k = 0$ *M1 $(kx-3)^2 = 1$ or $k^3x^2 - 6k^2x + 8k (= 0)$ *M1 $x = \frac{2}{k}$ or $\frac{4}{k}$ DM1 $\frac{d^2y}{dx^2} = 2k^2(kx-3)^{-3}$ B1 $^{\wedge}$ When $x = \frac{2}{k}$, $\frac{d^2y}{dx^2} = (-2k^2) < 0$ MAX All previous DB1 When $x = \frac{4}{k}$, $\frac{d^2y}{dx^2} = (2k^2) > 0$ MIN working correct DB1 (ii) $V = (\pi) \int \left[(x-3)^{-1} + (x-3) \right]^2 dx$ *M1 $= (\pi) \left[1 - (x-3)^{-1} + (x-3)^2 + 2 \right] dx$ A1 $= (\pi) \left[-(x-3)^{-1} + \frac{(x-3)^3}{3}(+2x) \right]$ Condone missing $2x$ A1 $= (\pi) \left[1 - \frac{1}{3} + 4 - \left(\frac{1}{3} - 9 + 0 \right) \right]$ DM1 A1	Page 7 Mark Scheme Cambridge International AS/A Level – October/November 2016 (i) Attempt diffn. and equate to $0 \frac{dy}{dx} = -k(kx-3)^{-2} + k = 0$ *M1 M $(kx-3)^2 = 1$ or $k^3x^2 - 6k^2x + 8k(=0)$ *M1 DM1 term $x = \frac{2}{k}$ or $\frac{4}{k}$ B1V ^k Pft When $x = \frac{2}{k}$, $\frac{d^2y}{dx^2} = (-2k^2) < 0$ MAX All previous DB1 When $x = \frac{4}{k}$, $\frac{d^2y}{dx^2} = (2k^2) > 0$ MIN working correct DB1 (ii) $V = (\pi) \int \left[(x-3)^{-1} + (x-3) \right]^2 dx$ *M1 A1 $= (\pi) \left[-(x-3)^{-1} + \frac{(x-3)^3}{3}(+2x) \right]$ Condone missing $2x$ A1 $= (\pi) \left[1 - \frac{1}{3} + 4 - \left(\frac{1}{3} - 9 + 0 \right) \right]$ DM1 A1 $= (5) \left[1 - \frac{1}{3} + 4 - \left(\frac{1}{3} - 9 + 0 \right) \right]$ Condone missing $2x$ A1	Page 7Mark SchemeSyllabusCambridge International AS/A Level – October/November 20169709(i)Attempt diffn. and equate to $0 \frac{dy}{dx} = -k(kx-3)^{-2} + k = 0$ *M1Must contain ($kx-3$) ² = 1 or $k^3x^2 - 6k^2x + 8k (= 0$) $(kx-3)^2 = 1$ or $k^3x^2 - 6k^2x + 8k (= 0)$ *M1Must contain ($kx-3$) ² = 2k ² ($kx-3$) ⁻³ $\frac{d^2y}{dx^2} = 2k^2 (kx-3)^{-3}$ B1 ⁴ Legitimately of $\frac{d^2y}{dx^2} = 2k^2 (kx-3)^{-3}$ B1 ⁴ Ft must contain where $A > 0$ When $x = \frac{2}{k}$, $\frac{d^2y}{dx^2} = (-2k^2) < 0$ MAX All previousDB1When $x = \frac{4}{k}$, $\frac{d^2y}{dx^2} = (2k^2) > 0$ MIN working correctDB1(ii) $V = (\pi) f[(x-3)^{-1} + (x-3)]^2 dx$ *M1Attempt to expandent of expansion $2x$ $= (\pi) [1 - \frac{1}{3} + 4 - (\frac{1}{3} - 9 + 0)]$ Condone missing $2x$ A1Or $= (\pi) [1 - \frac{1}{3} + 4 - (\frac{1}{3} - 9 + 0)]$ DM1A1 2 missing $\rightarrow 2$ $= (5)$ M1A All MA0A MIAOA1 2 missing $\rightarrow 2$	Page 7Mark SchemeSyllabusPagerCambridge International AS/A Level - October/November 2016970913(i)Attempt diffn. and equate to $0 \frac{dy}{dx} = -k(kx-3)^{-2} + k = 0$ *M1Must contain $(kx-3)^{-2} + c$ $(kx-3)^2 = 1$ or $k^3x^2 - 6k^2x + 8k (= 0)$ *M1DM1 $x = \frac{2}{k}$ or $\frac{4}{k}$ *A1*A1Legitimately obtained $\frac{d^2y}{dx^2} = 2k^2(kx-3)^{-3}$ B1 $^{\wedge}$ B1When $x = \frac{2}{k}$, $\frac{d^2y}{dx^2} = (-2k^2) < 0$ MAX All previousDB1When $x = \frac{4}{k}$, $\frac{d^2y}{dx^2} = (2k^2) > 0$ MIN working correctDB1(ii) $V = (\pi) f[(x-3)^{-1} + (x-3)]^2 dx$ *M1A1 $= (\pi) [1 - \frac{1}{3} + 4 - (\frac{1}{3} - 9 + 0)]$ Condone missing $2x$ A1 $= (\pi) [1 - \frac{1}{3} + 4 - (\frac{1}{3} - 9 + 0)]$ Condone missing $2x$ A1 $= (\pi) [3 - (3 - 3)^{-1} + (x - 3)^3) (x - 2)$ Condone missing $2x$ A1 $= (\pi) [1 - \frac{1}{3} + 4 - (\frac{1}{3} - 9 + 0)]$ DM1A1 $= (\pi) [3 - (3 - 6) + (1 - 9) (1 - 9) (1 - 1 - 9) (1$