

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/13 May/June 2016

Paper 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 \circledast IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	13

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √^h implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3 Mark Scheme		Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	13

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme			Syllabus	Paper
	Cambridge International AS/A Level –	May/June	2016	9709	13
1	$5C2\left(\frac{1}{x}\right)^{3}\left(3x^{2}\right)^{2}$ $10(\times1)\times3^{2}$	B1 B1	Can be seen in expansion		
	90 (x)	B1 [3]	Identified as leading to answer		
2	$(\pi) \int (x^3 + 1) dx$	M1	Attempt to resolve y^2 and attempt to integrate		
	$(\pi) \left[\frac{x^4}{4} + x \right]$ 6 π or 18.8	A1 DM1A1 [4]	Applying limits 0 and 2. (Limits reversed: Allow M mark and allow A mark if final answer is 6π)		
3 (i)	$6+k=2 \rightarrow k=-4$	B1 [1]			
(ii)	$(y) = \frac{6x^3}{3} - \frac{4}{-2}x^{-2} (+c)$	B1B1√ [∧]	ft on <i>their k</i> . Accept $+\frac{k}{-2}x^{-2}$		
	9 = 2 + 2 + c c must be present	M1	attempt ∫	ith numerical	-
	$(y) = 2x^3 + 2x^{-2} + 5$	A1 [4]		eds to be see $rightarrow c = -13\frac{1}{2}$ so	
4	$r = \frac{3+2d}{3}$ or $\frac{3+12d}{3+2d}$ or $r^2 = \frac{3+12d}{3}$	B1	1 correct eq sufficient	uation in <i>r</i> ar	nd <i>d</i> only is
	$(3+2d)^2 = 3(3+12d)$ oe OR sub $2d = 3r - 3$	M1	Eliminate r	or <i>d</i> using va	lid method
	(4)d(d-6) = 0 OR $3r^2 = 18r - 15 \rightarrow (r-1)(r-5)$	DM1	Attempt to s quadratic	simplify and	solve
	<i>d</i> = 6 <i>r</i> = 5	A1 A1 [5]	Ignore $d =$ Do not allow		

Page 5	Mark Scheme			Syllabus	Paper	
	Cambridge International AS/A Level – May/June 2016				13	
5	$\frac{dy}{dx} = [8] + [-2] [(2x-1)^{-2}]$	B2,1,0				
	$= 0 \rightarrow 4(2x-1)^2 = 1$ or $eg \ 16x^2 - 16x + 3 = 0$	M1	Set to zero, simplify and attempt to solve soi			
	$x = \frac{1}{4}$ and $\frac{3}{4}$	A1	Needs both <i>y</i> values	Needs both x values. Ignore		
	$\frac{d^2 y}{dx^2} = 8(2x-1)^{-3}$	B1√*	2	$(1)^{-3}$ where k	z > 0	
	When $x = \frac{1}{4}$, $\frac{d^2 y}{dx^2} (= -64)$ and/or < 0 MAX	DB1		s for last 3 m		
	When $x = \frac{3}{4}$, $\frac{d^2 y}{dx^2} (= 64)$ and/or > 0 MIN	DB1 [7]	(values either side of $1/4 \& 3/4$) must indicate <u>which</u> <i>x</i> -values and cannot use $x = 1/2$. (M1A1A1)			
6	$BAC = \sin^{-1}(3/5)$ or $\cos^{-1}(4/5)$ or $\tan^{-1}(3/4)$	B1	Accept 36.8	e(7)°		
	$ABC = \sin^{-1}(4/5)$ or $\cos^{-1}(3/5)$ or $\tan^{-1}(4/3)$	B1	Accept 53.1	(3)°		
	$ACB = \pi / 2 (Allow 90^{\circ})$	B 1				
	Shaded area = ΔABC – sectors ($AEF + BEG + CFG$)	M1				
	$\Delta ABC = \frac{1}{2} \times 4 \times 3 \text{oe}$	B1				
	Sum sectors $=\frac{1}{2} \left[3^2 0.6435 \right) +$	M1				
	$2^{2}0.9273 + 1^{2}1.5708$] OR $\frac{\pi}{360} \left[3^{2}36.8(7) + 2^{2}53.1(3) + 1^{2}90 \right]$	1411				
	360° $360^$	A1 [7]				
7	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 5x^{1/2} + 5$	B1				
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2$	B1				
	$2x-5x^{1/2}+5=2$ $2x-5x^{1/2}+3(=0)$ or equivalent 3-term	M1	Equate their	dy/dx to the	<i>ir</i> 2 or ½.	
	quadratic Attempt to solve for $x^{1/2}$ e.g.	A1				
	Attempt to solve for x e.g. $(2x^{1/2} - 3)(x^{1/2} - 1) = 0$	DM1	Dep. on 3-te	erm quadratic	2	
	$x^{1/2} = 3/2$ and 1 x = 9/4 and 1	A1 A1	ALT $5x^{\frac{1}{2}} = 2x + 3 \rightarrow 25x = (2x + 3)^2$ $4x^2 - 13x + 9(=0)$			
		[7]				
			x = 9/4 and	d 1		

Ρ	age 6	Mark Scheme		Syllabus Paper
		Cambridge International AS/A Level –	2016 9709 13	
8	(i) (ii)	$3\sin^{2} x - \cos^{2} x + \cos x = 0$ Use $s^{2} = 1 - c^{2}$ and simplify to 3-term quad $\cos x = -3/4$ and 1 $x = 2.42$ (allow 0.77π) or 0 (extra in range max 1) $2x = 2\pi - their 2.42 \text{ or } 360 - 138.6$ $x = 1.21 (0.385\pi), 1.93 (0.614/5\pi), 0, \pi (3.14)$ (extra max 1)	M1 M1 A1 [5] B1√ [↑] B1B1 [3]	Multiply by $\cos x$ Expect $4c^2 - c - 3 = 0$ SC1 for 0.723 (or 0.23π), π following $4c^2 + c - 3 = 0$ Expect $2x = 3.86$ Any 2 correct B1. Remaining 2 correct B1. SCB1 for all 69.3, 110.7, 0, 180 (degrees) SCB1 for .361, $\pi/2$, 2.78 after $4c^2 + c - 3 = 0$
9	(i)	$\mathbf{AB} = \mathbf{OB} - \mathbf{OA} = \begin{pmatrix} -1 \\ 2 \\ p+4 \end{pmatrix}$ $\mathbf{CB} = \mathbf{OB} - \mathbf{OC} = \begin{pmatrix} -4 \\ 5 \\ p-2 \end{pmatrix}$ $1 + 4 + (p+4)^2 = 16 + 25 + (p-2)^2$ $p = 2$	B1 B1 M1 A1	Ignore labels. Allow BA or BC
	(ii)	AB.CB = 4+10-5 = 9 $ AB = \sqrt{1+4+25} = \sqrt{30}, CB = \sqrt{16+25+1}$ $= \sqrt{42}$ $\cos ABC = \frac{9}{\sqrt{30}\sqrt{42}} \text{ or } \frac{9}{6\sqrt{35}}$ $ABC = 75.3^{\circ} \text{ or } 1.31 \text{ rads (ignore reflex angle 285^{\circ})}$	[4] M1 M1 M1 A1 [4]	Use of $x_1x_2 + y_1y_2 + z_1z_2$ Product of moduli Allow one of AB , CB reversed - but award A0
10	(i)	$2(ax^{2}+b)+3=6x^{2}-21$ a=3, b=-12	M1 A1A1 [3]	
	(ii)	$3x^2 - 12 \ge 0$ or $6x^2 - 21 \ge 3$ $x \le -2$ i.e. (max) $q = -2$	M1 A1 [2]	Allow = or \leq or > or <. Ft from their a, b Must be in terms of q (eg $q \leq -2$)
	(iii)	$y \ge 6(-3)^2 - 21 \Rightarrow$ range is $(y) \ge 33$	B1 [1]	Do not allow $y > 33$. Accept all other notations e.g. $[33, \infty)$ or $[33, \infty]$

Page 7	Mark Scheme				Paper
	Cambridge International AS/A Level – May/June 2016				13
(iv)	$y = 6x^2 - 21 \Rightarrow x = (\pm)\sqrt{\frac{y+21}{6}}$	M1			
	$(fg)^{-1}(x) = -\sqrt{\frac{x+21}{6}}$	A1	Allow $y =$ of x	Must be	a function
	Domain is $x \ge 33$	B1 √ [^] [3]	ft from <i>their</i> part (iii) but x essential		
11 (i)	$AB^2 = 6^2 + 7^2 = 85, BC^2 = 2^2 + 9^2 = 85$ (\rightarrow isosceles)	B1B1	Or $AB = BC$	$C = \sqrt{85}$ etc	
	$AC^2 = 8^2 + 2^2 = 68$	B1			
	$M = (2, -2)$ or $BM^2 = (\sqrt{85})^2 - (\frac{1}{2}\sqrt{68})^2$	B1	Where <i>M</i> is mid-point of <i>AC</i>		
	$BM = \sqrt{2^2 + 8^2} = \sqrt{68}$ or $\sqrt{85 - 17} = \sqrt{68}$	B1			
	Area $\Delta ABC = \frac{1}{2}\sqrt{68}\sqrt{68} = 34$	B1 [6]			
(ii)	Gradient of $AB = 7/6$	B1			
	Equation of <i>AB</i> is $y+1=\frac{7}{6}(x+2)$	M1	Or $y-6=$	$\frac{7}{6}(x-4)$	
	Gradient of $CD = -6/7$	M1		-	
	Equation of <i>CD</i> is $y+3 = \frac{-6}{7}(x-6)$	M1			
	Sim Eqns $2 = \frac{-6}{7}x + \frac{36}{7} - \frac{7}{6}x - \frac{14}{6}$	M1			
	$x = \frac{34}{85} = \frac{2}{5}$ oe	A1 [6]			