

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/12 May/June 2016

Paper 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	12

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol I implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	12

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR–2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4	Mark Scheme		Syllabus	Paper			
		Cambridge International AS/A Level –	• May/Ju	ne 20	16	9709	12]
1		$f: x \mapsto 10 - 3x, g: x \mapsto \frac{10}{3 - 2x},$						
		ff(x) = 10 - 3(10 - 3x)	B 1		Correct ı	insimplified	expression	
		$gf(2) = \frac{10}{3 - 2(10 - 3(2))} (= -2)$	B1		Correct u with 2 in	insimplified for x	expression	
		x = 2	B1	[3]				
2		$f'(x) = \frac{8}{\left(5 - 2x\right)^2}$						
		$f(x) = \frac{8(5-2x)^{-1}}{-1} \div -2 \ (+c)$	B1 B1		Correct v An atterr	vithout (÷ by pt at integra	2) tion (÷ by−2	2)
		Uses $x = 2, y = 7,$	M1		Substitut an integr	ion of correc al to find c	t values into	Э
		<i>c</i> = 3	A1	[4]				
3		$\overrightarrow{OA} = 2\mathbf{i} - 5\mathbf{j} - 2\mathbf{k}$ and $\overrightarrow{OB} = 4\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$.						
		$\overrightarrow{AB} = 2\mathbf{i} + \mathbf{j} + 4\mathbf{k} \text{ or } \overrightarrow{AC} = 4\mathbf{i} + 2\mathbf{j} + 8\mathbf{k}$	B 1					
		$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = 6\mathbf{i} - 3\mathbf{j} + 6\mathbf{k}$	M1		correct n	nethod for \overline{O}	\vec{C}	
		OR						
		$ \begin{pmatrix} 2\\1\\4 \end{pmatrix} = \begin{pmatrix} x-4\\y+4\\z-2 \end{pmatrix}, $	B1					
		$\overrightarrow{OC} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 6 \\ -3 \\ 6 \end{pmatrix}$	M1					
		OR (2) (0)						
		$\overline{OB} - \overline{OA} = \overline{OC} - \overline{OB}$ $\therefore \overline{OC} = 2\overline{OB} - \overline{OA}$	B 1					
		$= \begin{pmatrix} 8\\-8\\4 \end{pmatrix} - \begin{pmatrix} 2\\-5\\-2 \end{pmatrix} = \begin{pmatrix} 6\\-3\\6 \end{pmatrix}$	M1					
		Unit vector = (Their \overrightarrow{OC}) ÷ (Mod their \overrightarrow{OC})	M1		Divides	by their mod	of their \overrightarrow{OC}	
		$= (6\mathbf{i} - 3\mathbf{j} + 6\mathbf{k}) \div 9$	A1	[4]	Correct u	insimplified	expression	

[Page 5	Mark Scheme					Paper
		Cambridge International AS/A Level – May/June 2016				9709	12
4	(i)	$ \begin{pmatrix} x - \frac{2}{x} \end{pmatrix}^{6} $ Term is ${}_{6}C_{3} \times (-2)^{3} = (-)160 $ -160	B1 B1	[2]	±160 seen anywhere		
	(ii)	$ \left(2 + \frac{3}{x^2}\right) \left(x - \frac{2}{x}\right)^6 $ Term in $x^2 = {}_6C_2(-2)^2 x^2 $ = 60 (x ²)	B1 B1		±60 seen anywhere		
		Term independent of x: = $2 \times (\text{their}-160) + 3 \times (\text{their } 60)$ -140	M1 A1	[4]	Using 2 products correctly		
5	(i)	$\tan\left(\frac{\pi}{3}\right) = \frac{AC}{2x} \text{ or } \cos\left(\frac{\pi}{3}\right) \left(=\sin\frac{\pi}{6}\right) = \frac{2x}{AB}$ $\rightarrow AC = 2\sqrt{3x} \text{ or } AB = 4x$	B1		Either tri	ig ratio	
		$AM = \sqrt{13x^2}, \sqrt{13}x, 3.61x$	M1A	A1 [3]	Complet	e method.	
	(ii)	$\tan\left(\hat{MAC}\right) = \frac{x}{\text{Their }AC}$	M1		"Their AC" must be $f(x)$, $(M\hat{A}C) \neq \theta$.		
		$\theta = \frac{1}{6}\pi - \tan^{-1}\frac{1}{2\sqrt{3}} \mathbf{AG}$	A1	[2]	Justifies	$\frac{\pi}{6}$ and links	SMAC & θ
6	(i)	$PT = r \tan \alpha$	B 1				
		$QT = OT - OQ = \frac{r}{r} - r$					
		or $\sqrt{r^2 + r^2 \tan^2 \alpha} - r$	B 1				
		Perimeter = sum of the 3 parts including $r\alpha$	B1	[3]			
	(ii)	Area of triangle = $\frac{1}{2} \times 10 \times 10 \tan \frac{\pi}{3}$	M1		Correct f	formula used	, 50√3,86.6
		Area of sector = $\frac{1}{2} \times 10^2 \times \frac{1}{3}\pi$	M1		Correct f	formula used	$,\frac{50\pi}{3},52.36$
		Shaded region has area 34 (2sf)	A1	[3]			

© Cambridge International Examinations 2016

PMT

	Page 6	Mark Scheme				Paper	
		Cambridge International AS/A Level – May/June 2016			9709	12	
-			-				
7	(i)	$\frac{1+\cos\theta}{1-\cos\theta} - \frac{1-\cos\theta}{1+\cos\theta} \equiv \frac{4}{\sin\theta}$ $LHS = \frac{1+2c+c^2 - (1-2c+c^2)}{(1-c)(1+c)}$	M1	Attempt	at combining	g fractions.	
		$=\frac{4c}{1-c^2}$	A1 A1	A1 for numerator. A1 denominator			
		$= \frac{4}{s^2}$ $= \frac{4}{ts} \mathbf{A}\mathbf{G}$	A1 [4]	Essential	Essential step for award of A1		
	(ii)	$\sin\theta \left(\frac{1+\cos\theta}{1-\cos\theta} - \frac{1-\cos\theta}{1+\cos\theta}\right) = 3.$ $\rightarrow s \times \frac{4}{ts} = 3 \ (\rightarrow t = \frac{4}{3})$	M1	Uses part (i) to eliminate "s" correctly.			
		$\theta = 53.1^{\circ} \text{ and } 233.1^{\circ}$	A1 A1∜ [3]	$ eq^{h} $ for $180^{\circ} + 1^{\text{st}}$ answer.			
8		A (0, 7), B (8, 3) and C (3k, k)					
	(i)	<i>m</i> of <i>AB</i> is $-\frac{1}{2}$ oe. Eqn of <i>AB</i> is $y = -\frac{1}{2}x + 7$ Let $x = 3k, y = k$ k = 2.8 oe	B1 M1 M1 A1	Using A, I Using C	<i>B</i> or <i>C</i> to get or <i>A</i> , <i>B</i> in the	an equation equation	
		OR					
		$\frac{7-k}{0-3k} = \frac{3-k}{8-3k}$	M1A1	Using A,	<i>B</i> & <i>C</i> to equ	ate gradients	
		$\rightarrow 20k = 56 \rightarrow k = 2.8$	DM1A1	Simplifie quadratic	to a linear $x = 0$.	or 3 term	
		OR					
		$\frac{7-k}{0-3k} = \frac{7-3}{0-8}$	M1A1	Using A, gradients	B and C to e	quate	
		$\rightarrow 20k = 56 \rightarrow k = 2.8$	DM1A1 [4]	Simplifie quadratic	es to a linear $x = 0$.	or 3 term	

Page 7	Mark Scheme	Syllabus Paper			
	Cambridge International AS/A Level – Ma	16 9709 12			
(ii)	(ii) $M(4, 5)$ Perpendicular gradient = 2. Perp bisector has eqn $y-5=2(x-4)$ M1 M2 M2 M1 M1 M2 M2 M1 M2 M1 M2 M2 M1 M2 M1 M2 M2 M1 M2 M				
	Let $x = 3k$, $y = k$ $k = \frac{3}{5}$ oe OR	A1			
	$(0-3k)^2 + (7-k)^2 = (8-3k)^2 + (3-k)^2$	M1A1	Use of Pythagoras.		
	$-14k + 49 = 73 - 54k \rightarrow 40k = 24 \rightarrow k = 0.6$	DM1A1 [4]	Simplifies to a linear or 3 term quadratic $= 0$.		
9 (i) (a)	$a + (n-1)d = 10 + 29 \times 2$	M1	Use of <i>n</i> th term of an AP with $a=\pm 10$, $d=\pm 2$, $n=30$ or 29		
	= 68	A1 [2]	Condone – $68 \rightarrow 68$		
(b)	$\frac{1}{2}n(20+2(n-1)) = 2000 \text{ or } 0$	M1	Use of S_n formula for an AP with $a=\pm 10$, $d=\pm 2$ and equated to eith		
	$\rightarrow 2n^2 + 18n - 4000 = 0$ oe (n=) 41	A1 A1 [3]	0 or 2000. Correct 3 term quadratic = 0.		
(ii)	<i>r</i> = 1.1, oe	B1	e.g. $\frac{11}{10}$, 110%		
	Uses $S_{30} = \frac{10(1.1^{30} - 1)}{1.1 - 1}$ (= 1645)	M1	Use of S_n formula for a GP, a=±10, n=30.		
	Percentage lost = $\frac{2000 - 1645}{2000} \times 100$	DM1	Fully correct method for % left with "their 1645"		
	= 17.75	A1 [4]	allow 17.7 or 17.8.		
10	$y = \frac{8}{x} + 2x.$				
(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -8x^{-2} + 2$	B1	unsimplified ok		
	$\frac{\mathrm{d}^2 \mathrm{y}}{\mathrm{d}x^2} = 16x^{-3}$	B1	unsimplified ok		
	$\int y^2 dx = -64x^{-1} \text{ oe} + 32x \text{ oe} + \frac{4x^3}{3} \text{ oe} (+c)$	3 × B1 [5]	B1 for each term – unsimplified		

	Page 8	Mark Scheme	Syllabus	Paper		
		Cambridge International AS/A Level – Ma	16	9709	12	
		,				
	(ii)	sets $\frac{dy}{dx}$ to $0 \rightarrow x = \pm 2$	M1	Sets to 0 and attempts to solve		
		$\rightarrow M(2, 8)$	A1	Any pair of correct values A1		
		Other turning point is $(-2, -8)$	A1	Second pair of values A1		
		12		12		
		If $x = -2$, $\frac{d^2 y}{dx^2} < 0$	M1	Using their $\frac{d^2 y}{dx^2}$ if kx^{-3} and $x < 0$		
		u.		$\mathbf{d}x^2$		
		∴Maximum	A1			
			[5]			
	(iii)	Vol = $\pi \times [$ part (i) $]$ from 1 to 2	M1	Evidence	e of using lin	nits 1&2 in
		220-		their inte	egral of y^2 (ig	nore π)
		$\frac{220\pi}{3},73.3\pi,230$	A1			
		5	[2]			
11		$f: x \mapsto 6x - x^2 - 5$				
	(i)	$6x - x^2 - 5 \leqslant 3$				
		$\rightarrow x^2 - 6x + 8 \ge 0$	M1	$\pm (6x-x)$	$(c^2-8) = , \leq , \leq$	≥ 0 and
				attempts	to solve	
		$\rightarrow x = 2, x = 4$	A1	Needs both values whether $=2, <$		
		r < 2 $r > 4$	A 1	>2 Accept all recognisable notation		
		$x \leq 2, x \geq 4$ condone < and/or >	[3]			
	(ii)	Founte $mr + c$ and $6r - r^2 - 5$	M1	Fauster sets to 0		
	(1)	Use of " $b^2 - 4ac$ "	DM1	Use of discriminant with values		
				a.b.c independent of x .		
		$4c = m^2 - 12m + 16$. AG	Al	= (0) must appear before last lim		
		OR				
					1	
		$\frac{dy}{dx} = 6 - 2x = m \rightarrow x = \left(\frac{6 - m}{2}\right)$	M1	Equates	$\frac{dy}{dy}$ to <i>m</i> and	rearrange
					ax	
		$(6-m)$ $(6-m)$ $(6-m)^2$				
		$m\left(\frac{1}{2}\right) + c = 6\left(\frac{1}{2}\right) - \left(\frac{1}{2}\right) - 5$	M1	Equates	mx + c and 6 titutes for x	$5x - x^2 - 5$
				and subs	indies for x	
		$4c = m^2 - 12m + 16$. AG	A1			
			[3]	2		
	(iii)	$6x - x^2 - 5 = 4 - (x - 3)^2$	B1 B1	$4 B1 - (x - 3)^2 B1$		
	(•)		[2]	≜ C		
	(iv)	k=3.	B1∀ [1]	\blacksquare for " b'' .		
	(v)	$g^{-1}(x) = \sqrt{4-x} + 3$	MI A1 [2]	Correct order of operations. + $\sqrt{4}$ × + 2 M1A0		
			[~]	$\frac{\pm\sqrt{4-x+3}}{\sqrt{x-4}+2}$ M1A0		
				$\sqrt{x-4} + 3$ M1A0		
				$\sqrt{4-y}$	+3 MIA0	