

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS
Paper 1
MARK SCHEME
Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme		Paper
	Cambridge International AS/A Level – May/June 2016	9709	11

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.
- The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a
 candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise
 indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct
 form of answer is ignored.
- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or
 which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A
 or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For
 Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to
 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	11

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR–1 A penalty of MR–1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through √ marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR–2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA-1 This is deducted from A or B marks in the case of premature approximation. The PA-1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	11

_			_
1	$\left(x - \frac{3}{2x}\right)^{6}$ Term is ${}^{6}C_{3} \times x^{3} \times \left(\frac{-3}{2x}\right)^{3}$ $\rightarrow -67.5 \text{ oe}$	B1 B1 B1	B1 for Bin coeff. B1 for rest.
2	$3\sin^2\theta = 4\cos\theta - 1$ Uses $s^2 + c^2 = 1$ $\rightarrow 3c^2 + 4c - 4 (= 0)$ $(\rightarrow c = \frac{2}{3} \text{ or } -2)$	M1 A1	Equation in $\cos\theta$ only. All terms on one side of (=)
	$\rightarrow \theta = 48.2^{\circ} \text{ or } 311.8^{\circ}$ 0.841, 5.44 rads, A1 only (0.268 π , 1.73 π)	A1 A1 √ ^h [4]	For 360° – 1st answer.
3	$x = \frac{12}{y^2} - 2.$ $Vol = (\pi) \times \int x^2 dy$ $\rightarrow \left[\frac{-144}{3y^3} + 4y + \frac{48}{y} \right]$	M1 3 × A1	Ignore omission of π at this stage Attempt at integration Un-simplified
	Limits 1 to 2 used $\rightarrow 22\pi$	A1 [5]	only from correct integration
4 (i)	$\frac{dy}{dx} = 2 - 8(3x + 4)^{-\frac{1}{2}}$ $(x = 0, \to \frac{dy}{dx} = -2)$ $\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt} \to -0.6$	M1A1 [2]	Ignore notation. Must be $\frac{dy}{dx} \times 0.3$
(ii)	$y = \{2x\} \left\{ -\frac{8\sqrt{3x+4}}{\frac{1}{2}} \div 3 \right\} (+c)$ $x = 0, y = \frac{4}{3} \to c = 12.$	B1 B1 M1 A1 [4]	No need for $+c$. Uses x , y values after \int with c
5 (i)	$A = 2y \times 4x (= 8xy)$ $10y + 12x = 480$ $\rightarrow A = 384x - 9.6x^{2}$	B1 B1 B1	answer given

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	11

	(ii)	$\frac{dA}{dx} = 384 - 19.2x$ = 0 when $x = 20$ $\to x = 20, y = 24.$ Uses $x = -\frac{b}{2a} = \frac{-384}{-19.2} = 20$, M1, A1 $y = 24$, A1 From graph: B1 for $x = 20$, M1, A1 for $y = 24$	B1 M1 A1	[3]	Sets to 0 and attempt to solve oe Might see completion of square Needs both <i>x</i> and <i>y</i> Trial and improvement B3 .
6	(a) (b) (i) (ii)	$y = 2x^{2} - 4x + 8$ Equates with $y = mx$ and selects a , b , c Uses $b^{2} = 4ac$ $\rightarrow m = 4 \text{ or } -12.$ $f(x) = x^{2} + ax + b$ Eqn of form $(x-1)(x-9)$ $\rightarrow a = -10, b = 9$ (or using 2 sim eqns M1 A1) $Calculus \text{ or } x = \frac{1}{2} (1+9) \text{ by symmetry}$ $\rightarrow (5, -16)$	M1 M1 A1 M1 A1	[3] [2]	Equate + solution or use of dy/dx Use of discriminant for both. Any valid method allow (x+1)(x+9) for M1 must be stated Any valid method
7	(i) (ii)	$CD = r\cos\theta, BD = r - r\sin\theta \text{ oe}$ $Arc \ CB = r \left(\frac{1}{2}\pi - \theta\right) \text{ oe}$ $\rightarrow P = r\cos\theta + r - r\sin\theta + r \left(\frac{1}{2}\pi - \theta\right) \text{ oe}$ $Sector = \frac{1}{2}.5^2.\left(\frac{1}{2}\pi - 0.6\right) (12.135)$ $Triangle = \frac{1}{2}.5\cos0.6.5\sin0.6 (5.825)$ $\rightarrow Area = 6.31$ $(or \frac{1}{4} \text{ circle - triangle - sector})$	B1 B1 B1 B1 M1 M1 A1	[4]	allow degrees but not for last B1 \sqrt{sum} sum – assuming trig used Uses $\frac{1}{2}r^2\theta$ Uses $\frac{1}{2}bh$ with some use of trig.

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	11

8	$y = 3x - \frac{4}{x}$		
	$\frac{dy}{dx} = 3 + \frac{4}{x^2}$	B1	
	m of AB = 4	B1	
	Equate $\rightarrow x = \pm 2$ $\rightarrow C(2, 4)$ and $D(-2, -4)$	M1 A1	Equating + solution.
	$\rightarrow M(0, 0)$ or stating M is the origin m of $CD = 2$	B1√`	\checkmark on their C and D
	Perpendicular gradient $(=-\frac{1}{2})$	M1 A1	Use of $m_1m_2 = -1$, must use m_{CD} (not $m = 4$)
	$\rightarrow y = -\frac{1}{2}x$	[7]	
9 (a)	$a = 50, ar^2 = 32$	B1	seen or implied
	$\rightarrow r = \frac{4}{5} \text{ (allow } -\frac{4}{5} \text{ for M mark)}$	M1	Finding r and use of correct S_{∞} formula
	$\rightarrow S_{\infty} = 250$	A1 [3]	Only if $ \mathbf{r} < 1$
(b) (i)	2sinx, 3cosx, (sinx + 2cosx). 3c - 2s = (s + 2c) - 3c (or uses $a, a + d, a + 2d$)	M1	Links terms up with AP, needs one expression for <i>d</i> .
	$\rightarrow 4c = 3s \rightarrow t = \frac{4}{3}$	M1 A1	Arrives at $t = k$. ag
	SC uses $t = \frac{4}{3}$ to show	[3]	
	$u_1 = \frac{8}{5}, u_2 = \frac{9}{5}, u_3 = \frac{10}{5}, $ B1 only		
(ii)	$\rightarrow c = \frac{3}{5}$, $s = \frac{4}{5}$ or calculator $x = 53.1^{\circ}$	M1	
	$\rightarrow a = 1.6, d = 0.2$	M1	Correct method for both a and d .
	$\rightarrow a = 1.6, d = 0.2$ $\rightarrow S_{20} = 70$	A1 [3]	(Uses S_n formula)
10 (i)	$\overrightarrow{OA} = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}, \ \overrightarrow{OB} = \begin{pmatrix} 5 \\ -1 \\ k \end{pmatrix}, \ \overrightarrow{OC} = \begin{pmatrix} 2 \\ 6 \\ -3 \end{pmatrix}$		
	$10 - 1 - 2k = 0 \longrightarrow k = 4\frac{1}{2}$	M1 A1 [2]	Use of scalar product = 0.

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	11

(i	ii)	$\overline{AB} = \begin{pmatrix} 3 \\ -2 \\ k+2 \end{pmatrix},$	B1	
		$\left \overrightarrow{OC} \right = 7 \text{ (seen or implied)}$ $3^2 + (-2)^2 + (k+2)^2 = 49$ $\rightarrow k = 4 \text{ or } -8$	B1 M1 A1 [4]	Correct method. Both correct. Condone sign error in \overline{AB}
(i	iii)	$\left \overrightarrow{OA} \right = 3$ $\overrightarrow{OD} = 3 \overrightarrow{OA} = \begin{pmatrix} 6 \\ 3 \\ -6 \end{pmatrix} \text{ and } \overrightarrow{OE} = 2$ $\overrightarrow{OC} = \begin{pmatrix} 4 \\ 12 \\ -6 \end{pmatrix}$	M1 A1	Scaling from magnitudes/unit vector – oe.
		$ \overline{DE} = \overline{OE} - \overline{OD} = \begin{pmatrix} -2\\9\\0 \end{pmatrix}, $ $ \rightarrow \text{Magnitude of } \sqrt{85}. $	M1 A1	Correct vector subtraction.
			[4]	
11 (i	i)	$f: x \to 4\sin x - 1 \text{ for } -\frac{\pi}{2} \le x \le \frac{\pi}{2}$ Range $-5 \le f(x) \le 3$	B1 B1 [2]	-5 and 3 Correct range
(i	ii)	$4s - 1 = 0 \rightarrow s = \frac{1}{4} \rightarrow x = 0.253$ $x = 0 \rightarrow y = -1$	M1 A1 B1 [3]	Makes sinx subject. Degrees M1 A0 , (14.5°)
(i	iii)	- <u>F</u> O <u>Ti</u> x	B1√ [↑] B1 [2]	Shape from their range in (i) Flattens, curve.
(i	iv)	range $-\frac{1}{2} \pi \leqslant f^{-1}(x) \leqslant \frac{1}{2} \pi$ domain $-5 \leqslant x \leqslant 3$	B1 B1√	on part (i) (only for 2 numerical values) Correct order of organizations
		Inverse $f^{-1}(x) = \sin^{-1}\left(\frac{x+1}{4}\right)$	M1 A1 [4]	Correct order of operations
			i	1