CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the May/June 2015 series

9709 MATHEMATICS

9709/11

Paper 1, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme		Paper
	Cambridge International AS/A Level – May/June 2015	9709	11

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following
 on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 A and B marks are not given for fortuitously "correct" answers or results obtained from
 incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme		Paper
	Cambridge International AS/A Level – May/June 2015		11

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only - often written by a "fortuitous" answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR–1 A penalty of MR–1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \(\frac{1}{2} \)" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR–2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA–1 This is deducted from A or B marks in the case of premature approximation. The PA–1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9709	11

1	θ is obtuse, $\sin \theta = k$		
(i)	$\cos\theta = -\sqrt{(1-k^2)}$	B1 [1]	cao
(ii)	$\tan \theta = \frac{\sin \theta}{\cos \theta} \text{ used}$	M1	Used, attempt at cosine seen in (i)
	$\rightarrow \tan \theta = -\frac{k}{\sqrt{(1-k^2)}} \text{ aef}$	A1√ [2]	Ft for their cosine as a function of <i>k</i> only, from part (i)
(iii)	$\sin\left(\theta+\pi\right)=-k$	B1 [1]	cao
2	$y = 2x^2$, $X(-2, 0)$ and $P(p, 0)$		
(i)	$A = \frac{1}{2} \times (2 + p) \times 2p^{2} (= 2p^{2} + p^{3})$	M1 A1 [2]	Attempt at base and height in terms of p and use of $\frac{bh}{2}$
(ii)	$\frac{\mathrm{d}A}{\mathrm{d}p} = 4p + 3p^2$	B1	cao
	$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}p} \times \frac{\mathrm{d}p}{\mathrm{d}t} = 0.02 \times 20 = 0.4$	M1 A1	any correct method, cao
	or $\frac{dA}{dt} = 4p \frac{dp}{dt} + 3p^2 \frac{dp}{dt}$	[3]	
3	$(1-x)^2(1+2x)^6$.		
(i) (a)	$(1-x)^6 = 1 - 6x + 15x^2$	B2,1 [2]	-1 each error
(b)	$(1+2x)^6 = 1 + 12x + 60x^2$	B2,1 [2]	-1 each error SC B1 only, in each part, for all 3 correct descending powers SC only one penalty for omission of the '1' in each expansion
(ii)	Product of (a) and (b) with >1 term $\rightarrow 60 - 72 + 15 = 3$	M1 DM1A1 [3]	Must be 2 or more products M1 exactly 3 products. cao, condone $3x^2$

Page 5	Mark Scheme		Paper
	Cambridge International AS/A Level – May/June 2015	9709	11

4	$\overrightarrow{OA} = \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}, \overrightarrow{OB} = \begin{pmatrix} 6 \\ -3 \\ 2 \end{pmatrix}, \overrightarrow{OC} = \begin{pmatrix} k \\ -2k \\ 2k-3 \end{pmatrix}$		
(i)	$OA \cdot OB = 18 - 8 = 10$ Modulus of $OA = 5$, of $OB = 7$	M1	Use of $x_1x_2 + y_1y_2 + z_1z_2$
	Angle $AOB = \cos^{-1}\left(\frac{10}{35}\right)$ aef	M1	All linked with modulus cao, (if angle given, no penalty),
	$\rightarrow \frac{10}{35} \text{ or } \frac{2}{7}$	A1 [3]	correct angle implies correct cosine
(ii)	$\overrightarrow{AB} = \mathbf{b} - \mathbf{a} = \begin{pmatrix} 3 \\ -3 \\ 6 \end{pmatrix}$	B1	allow for $\mathbf{a} - \mathbf{b}$
	$k^2 + 4k^2 + (2k - 3)^2 = 9 + 9 + 36$	M1	Correct use of moduli using their AB
	$\rightarrow 9k^2 - 12k - 45(=0)$ $\rightarrow k = 3 \text{ or } k = -\frac{5}{3}$	DM1	obtains 3 term quadratic.
	$\rightarrow k-3$ or $k=-\frac{3}{3}$	A1 [4]	
5 (i)	$24 = r + r + r\theta$ $24 = 2r$		(May not use θ)
	$\rightarrow \theta = \frac{24 - 2r}{r}$	M1	Attempt at $s = r\theta$ linked with 24 and r
	$A = \frac{1}{2} r^2 \theta = \frac{24r}{2} - r^2 = 12r - r^2$. aef, ag	M1A1 [3]	Uses A formula with θ as $f(r)$. cao
(ii)	$(A =)36 - (r - 6)^2$	B1 B1 [2]	cao
(iii)	Greatest value of $A = 36$	B1√^	Ft on (ii).
	$(r=6) \rightarrow \theta=2$	B1 [2]	cao, may use calculus or the discriminant on $12r - r^2$

Page 6	Mark Scheme		Paper
	Cambridge International AS/A Level – May/June 2015	9709	11

6 (i) $y-2t=-2(x-3t)(y+2x=8t)$ Set x to $0 \rightarrow B(0, 8t)$ Set y to $0 \rightarrow A(4t, 0)$ \rightarrow Area = $16t^2$ $M1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ A					
Set y to $0 \rightarrow A(4t, 0)$ \rightarrow Area = $16t^2$ \rightarrow B1 \rightarrow Cao Unsimplified or equivalent forms co unsimplified or equivalent forms co a Cursimplified or equivalent forms co a Cursimplified or equivalent forms a Correctly shown. This lies on the line $y = x$. a Any valid method, seen or implied. Could be answers only. Both a and a Correct formula with a Correct formula with a Correct formula with a Correct formula with a Any be implied in a So a Any valid method, seen or implied. Could be answers only. Both a and a Correct formula with a Correct formula with a Correct formula with a Correct formula with a Correct formula or sum of 5 terms a Any valid method, seen or implied. Could be answers only. Both a and a Correct formula with a Correct formula or sum of 5 terms a Al Correct a formula or sum of 5 terms a Al Correct So formula or sum of 5 terms a	6	(i)	, , , ,	M1	Unsimplified or equivalent forms
(ii)			` ' '	M1	Attempt at both A and R than using
(ii) $m = \frac{1}{2}$ $\Rightarrow y - 2t = \frac{1}{2}(x - 3t)(2y = x + t)$ Set y to $0 \to C(-t, 0)$ Midpoint of CP is (t, t) This lies on the line $y = x$. A1 [4] 7 (a) $m^2 = \frac{1}{3}, ar^3 = \frac{2}{9}$ $\Rightarrow r = \frac{2}{3} \text{ aef}$ Substituting $\Rightarrow a = \frac{3}{4}$ $\Rightarrow S_{\infty} = \frac{\frac{3}{4}}{\frac{1}{3}} = 2\frac{1}{4} \text{ aef}$ M1 Any valid method, seen or implied. Could be answers only. Both a and r Correct formula with $ r < 1$, cao (b) $4a = a + 4d \Rightarrow 3a = 4d$ $360 = S_5 = \frac{5}{2}(2a + 4d) \text{ or } 12.5a$ $\Rightarrow a = 28.8^{\circ} \text{ aef}$ Largest $= a + 4d$ or $4a = 115.2^{\circ} \text{ aef}$ A1 cao, may be implied (may use degrees or radians)					
(ii) $m = \frac{1}{2}$ $\Rightarrow y - 2t = \frac{1}{2}(x - 3t)(2y = x + t)$ Set y to $0 \rightarrow C$ (-t, 0) Midpoint of CP is (t, t) This lies on the line $y = x$. A1 [4] 7 (a) $ar^2 = \frac{1}{3}, ar^3 = \frac{2}{9}$ $\Rightarrow r = \frac{2}{3} \text{ aef}$ Substituting $\Rightarrow a = \frac{3}{4}$ $\Rightarrow S_{\infty} = \frac{\frac{3}{4}}{\frac{1}{3}} = 2\frac{1}{4} \text{ aef}$ M1 A1 [4] (b) $4a = a + 4d \rightarrow 3a = 4d$ $360 = S_5 = \frac{5}{2}(2a + 4d) \text{ or } 12.5a$ $\Rightarrow a = 28.8^{\circ} \text{ aef}$ Largest $= a + 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$ B1 Cao Unsimplified or equivalent forms co Correctly shown. A1 A1 [4] Any valid method, seen or implied. Could be answers only. B1 May be implied in $360 = 5/2(a + 4a)$ Correct formula with $ r < 1$, cao A1 Correct S_n formula or sum of 5 terms A2 A3 A4 Correct S_n formula or sum of 5 terms A1 Cao, may be implied (may use degrees or radians)			\rightarrow Area = $16t^2$		Cao
$m = \frac{1}{2}$ $\Rightarrow y - 2t = \frac{1}{2}(x - 3t)(2y = x + t)$ Set y to $0 \to C(-t, 0)$ Midpoint of CP is (t, t) This lies on the line $y = x$. $m = \frac{2}{3}$ $\Rightarrow r = \frac{2}{3} \text{ aef}$ Substituting $\Rightarrow a = \frac{3}{4}$ $\Rightarrow S_{\infty} = \frac{\frac{3}{4}}{\frac{1}{3}} = 2\frac{1}{4} \text{ aef}$ M1 Any valid method, seen or implied. Could be answers only. Both a and r M1 Algorithm Any valid method, seen or implied. Could be answers only. Both a and r M1 Algorithm Any valid method, seen or implied. Could be answers only. Both a and r M1 Algorithm Any valid method, seen or implied. Could be answers only. Both a and r M1 Algorithm Any valid method, seen or implied. Could be answers only. Both a and r M1 Algorithm Any valid method, seen or implied. Could be answers only. Both a and r M1 Algorithm Any valid method, seen or implied. Could be answers only. Both a and r M1 Algorithm Any valid method, seen or implied. Could be answers only. Both a and r M1 Algorithm Any valid method, seen or implied. Could be answers only. Both a and r M1 Algorithm Any valid method, seen or implied. Could be answers only. Both a and r M1 Algorithm Any valid method, seen or implied. Could be answers only. Both a and r M1 Algorithm Any valid method, seen or implied. Could be answers only. Both a and r M1 Algorithm Any valid method, seen or implied. Could be answers only. Both a and r M1 Algorithm Any valid method, seen or implied. Could be answers only. Both a and r M1 Algorithm Any valid method, seen or implied. Could be answers only. Both a and r M1 Algorithm Any valid method, seen or implied. Could be answers only. Both a and r M1 Algorithm Any valid method, seen or implied. Could be answers only. Both a and r M1 Algorithm Any valid method, seen or implied. Could be answers only. Both a and r Algorithm Any valid method, seen or implied. Could be answers only. Both a and r M2 Algorithm Any valid method, seen or implied. Could be answers only. Both a and r				[2]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(ii)	1		cao
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			$m=-\frac{1}{2}$	B1	Unsimplified or equivalent forms
			_		· · · · · · · · · · · · · · · · · · ·
Set y to $0 \rightarrow C$ ($-t$, 0) Midpoint of CP is (t, t) This lies on the line $y = x$. A1 [4] 7 (a) $ar^2 = \frac{1}{3}$, $ar^3 = \frac{2}{9}$ $\rightarrow r = \frac{2}{3}$ aef Substituting $\rightarrow a = \frac{3}{4}$ $\rightarrow S_{\infty} = \frac{\frac{3}{4}}{\frac{1}{3}} = 2\frac{1}{4}$ aef (b) $4a = a + 4d \rightarrow 3a = 4d$ $360 = S_5 = \frac{5}{2}(2a + 4d)$ or $12.5a$ $\rightarrow a = 28.8^{\circ}$ aef Largest $= a + 4d$ or $4a = 115.2^{\circ}$ aef A1 Correctly shown. A1 A1 A1 A1 Any valid method, seen or implied. Could be answers only. B1 M2 M3 M3 M3 M4 Correct formula with $ r < 1$, cao M1 Correct formula or sum of 5 terms			$\rightarrow y - 2t = \frac{1}{2}(x - 3t)(2y = x + t)$	M1	
Set y to $0 \rightarrow C(-t, 0)$ Midpoint of CP is (t, t) This lies on the line $y = x$. A1 [4] 7 (a) $ar^2 = \frac{1}{3}$, $ar^3 = \frac{2}{9}$ $ \rightarrow r = \frac{2}{3} \text{ aef}$ Substituting $\rightarrow a = \frac{3}{4}$ $ \rightarrow S_{\infty} = \frac{\frac{3}{4}}{\frac{1}{3}} = 2\frac{1}{4} \text{ aef}$ M1 Any valid method, seen or implied. Could be answers only. Both a and r $ \rightarrow S_{\infty} = \frac{\frac{3}{4}}{\frac{1}{3}} = 2\frac{1}{4} \text{ aef}$ M1 A1 [4] Correct formula with $ r < 1$, cao (b) $4a = a + 4d \rightarrow 3a = 4d$ B1 May be implied in $360 = 5/2(a + 4a)$ $ 360 = S_5 = \frac{5}{2}(2a + 4d) \text{ or } 12.5a$ $ \rightarrow a = 28.8^{\circ} \text{ aef}$ $ Largest = a + 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$ B1 cao, may be implied (may use degrees or radians)			_	A1	correctly shown.
This lies on the line $y = x$. A1 [4] 7 (a) $ar^2 = \frac{1}{3}$, $ar^3 = \frac{2}{9}$ $\rightarrow r = \frac{2}{3}$ aef Substituting $\rightarrow a = \frac{3}{4}$ $\rightarrow S_{\infty} = \frac{\frac{3}{4}}{\frac{1}{3}} = 2\frac{1}{4}$ aef (b) $4a = a + 4d \rightarrow 3a = 4d$ $360 = S_5 = \frac{5}{2}(2a + 4d)$ or 12.5a $\rightarrow a = 28.8^{\circ}$ aef Largest $= a + 4d$ or $4a = 115.2^{\circ}$ aef A1 [4] Any valid method, seen or implied. Could be answers only. Both a and r Correct formula with $ r < 1$, cao B1 May be implied in $360 = 5/2(a + 4a)$ Correct S_n formula or sum of 5 terms A1 Cao, may be implied (may use degrees or radians)					-
7 (a) $ar^2 = \frac{1}{3}$, $ar^3 = \frac{2}{9}$ $\Rightarrow r = \frac{2}{3}$ aef Substituting $\Rightarrow a = \frac{3}{4}$ Any valid method, seen or implied. Could be answers only. Both a and r $\Rightarrow S_{\infty} = \frac{\frac{3}{4}}{\frac{1}{3}} = 2\frac{1}{4}$ aef M1 A1 Correct formula with $ r < 1$, cao (b) $4a = a + 4d \Rightarrow 3a = 4d$ B1 May be implied in $360 = 5/2(a + 4a)$ $360 = S_5 = \frac{5}{2}(2a + 4d)$ or $12.5a$ M1 Correct S_n formula or sum of S_n terms $\Rightarrow a = 28.8^{\circ}$ aef Largest $= a + 4d$ or $4a = 115.2^{\circ}$ aef A1 B1 Cao, may be implied (may use degrees or radians)					
7 (a) $ar^2 = \frac{1}{3}$, $ar^3 = \frac{2}{9}$ $\Rightarrow r = \frac{2}{3}$ aef $ar^3 = \frac{2}{9}$ Substituting $\Rightarrow a = \frac{3}{4}$ Any valid method, seen or implied. Could be answers only. Both a and r $\Rightarrow S_{\infty} = \frac{\frac{3}{4}}{\frac{1}{3}} = 2\frac{1}{4}$ aef $ar^3 = \frac{1}{4}$ Any valid method, seen or implied. Could be answers only. Both a and r M1 A1 Correct formula with $ r < 1$, cao $ar^3 = \frac{1}{4}$ Any valid method, seen or implied. Could be answers only. Both a and r A1 Correct formula with $ r < 1$, cao $ar^3 = \frac{3}{4}$ A1 Correct $ar^3 = \frac{5}{4}$ A1 Correct $ar^3 = \frac{5}{4}$ A1 Correct $ar^3 = \frac{5}{4}$ Correct $ar^3 = \frac{5}{$			I his lies on the line $y = x$.		
				[4]	
			1 2		
	7	(a)	$ar^2 = \frac{1}{2}$, $ar^3 = \frac{2}{0}$		
Substituting $\rightarrow a = \frac{3}{4}$ $\rightarrow S_{\infty} = \frac{\frac{3}{4}}{\frac{1}{3}} = 2\frac{1}{4} \text{ aef}$ A1 Both a and r $M1 \text{ A1}$ Correct formula with $ r < 1$, cao (b) $4a = a + 4d \rightarrow 3a = 4d$ $360 = S_5 = \frac{5}{2}(2a + 4d) \text{ or } 12.5a$ $\rightarrow a = 28.8^{\circ} \text{ aef}$ Largest $= a + 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$ A1 Correct S_n formula or sum of 5 terms A1 Cao, may be implied (may use degrees or radians)					
Substituting $\rightarrow a = \frac{3}{4}$ $\rightarrow S_{\infty} = \frac{\frac{3}{4}}{\frac{1}{3}} = 2\frac{1}{4} \text{ aef}$ A1 Both a and r $M1 \text{ A1}$ Correct formula with $ r < 1$, cao (b) $4a = a + 4d \rightarrow 3a = 4d$ $360 = S_5 = \frac{5}{2}(2a + 4d) \text{ or } 12.5a$ $\rightarrow a = 28.8^{\circ} \text{ aef}$ Largest $= a + 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$ A1 Correct S_n formula or sum of 5 terms A1 Cao, may be implied (may use degrees or radians)			$\rightarrow r = \frac{2}{3}$ aef	M1	Any valid method, seen or implied.
			3		Could be answers only.
			Substituting $\rightarrow a = \frac{3}{2}$	A1	Both <i>a</i> and <i>r</i>
(b) $4a = a + 4d \rightarrow 3a = 4d$ $360 = S_5 = \frac{5}{2}(2a + 4d) \text{ or } 12.5a$ $360 = S_5 = \frac{5}{2}(2a + 4d) \text{ or } 12.5a$ $4a = a + 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$ B1 May be implied in $360 = 5/2(a + 4a)$ $360 = 5/2(a + 4a)$ Correct S_n formula or sum of 5 terms $41 \text{ cao, may be implied}$ $60 = 3 + 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$ $11 = 3 + 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$ $12 = 3 + 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$ $13 = 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$ $14 = 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$ $14 = 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$ $15 = 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$ $16 = 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$ $17 = 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$ $18 = 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$ $18 = 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$ $18 = 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$			T .		
(b) $4a = a + 4d \rightarrow 3a = 4d$ $360 = S_5 = \frac{5}{2}(2a + 4d) \text{ or } 12.5a$ $360 = S_5 = \frac{5}{2}(2a + 4d) \text{ or } 12.5a$ $4a = a + 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$ B1 May be implied in $360 = 5/2(a + 4a)$ $360 = 5/2(a + 4a)$ Correct S_n formula or sum of 5 terms $41 \text{ cao, may be implied}$ $60 = 3 + 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$ $11 = 3 + 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$ $12 = 3 + 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$ $13 = 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$ $14 = 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$ $14 = 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$ $15 = 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$ $16 = 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$ $17 = 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$ $18 = 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$ $18 = 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$ $18 = 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$			$\rightarrow S_{\infty} = \frac{\frac{3}{4}}{\frac{1}{4}} = 2\frac{1}{4}$ aef	M1 A1	Correct formula with $ r < 1$, cao
(b) $4a = a + 4d \rightarrow 3a = 4d$ $360 = S_5 = \frac{5}{2}(2a + 4d) \text{ or } 12.5a$ $360 = S_5 = \frac{5}{2}(2a + 4d) \text{ or } 12.5a$ $4a = a + 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$ B1 May be implied in $360 = 5/2(a + 4a)$ $360 = S_5 = \frac{5}{2}(2a + 4d) \text{ or } 12.5a$ $41 \text{ cao, may be implied}$ $6a = 28.8^{\circ} \text{ aef}$ $7a = 28.8^{\circ} \text{ aef}$ $8a = 28.8^{\circ} $			$\frac{1}{3}$		
$360 = S_5 = \frac{5}{2}(2a + 4d) \text{ or } 12.5a$ $360 = \frac{5}{2}(2a + 4d)$ $360 = \frac{5}{2}(a + 4a)$ $360 = \frac{5}{2}(a + 4a)$ 41 41 $42 = 28.8^{\circ} \text{ aef}$ 41 $43 = 28.8^{\circ} \text{ aef}$ 41 $44 = 115.2^{\circ} \text{ aef}$ 41 $41 = 24 = 24 = 24 = 24 = 24 = 24 = 24 = $					
$360 = S_5 = \frac{5}{2}(2a + 4d) \text{ or } 12.5a$ $A1 \qquad \text{Correct } S_n \text{ formula or sum of 5 terms}$ $A1 \qquad \text{cao, may be implied}$ $Largest = a + 4d \text{ or } 4a = 115.2^{\circ} \text{ aef}$ $B1 \qquad \text{(may use degrees or radians)}$		(b)	$4a = a + 4d \rightarrow 3a = 4d$	B1	•
terms					360 = 5/2(a+4a)
terms			$360 = S_c = \frac{5}{2}(2a+4d)$ or 12.5a	M1	Correct S. formula or sum of 5
$\rightarrow a = 28.8^{\circ}$ aef Largest = $a + 4d$ or $4a = 115.2^{\circ}$ aef A1 cao, may be implied (may use degrees or radians)			2	1411	
Largest = $a + 4d$ or $4a = 115.2^{\circ}$ aef B1 (may use degrees or radians)					
[4]			Largest = $a + 4d$ or $4a = 115.2^{\circ}$ aef		(may use degrees or radians)
				[4]	

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9709	11

8	$f: x \mapsto 5 + 3\cos\left(\frac{1}{2}x\right) \text{ for } 0 \le x \le 2\pi.$		
(i)	$5 + 3\cos\left(\frac{1}{2}x\right) = 7$		
	$\cos\left(\frac{1}{2}x\right) = \frac{2}{3}$	B1	Makes $\cos\left(\frac{1}{2}x\right) = \frac{2}{3}$
	$\frac{1}{2}x = 0.84 \qquad x = 1.68 \text{ only, aef}$ (in given range)	M1A1 [3]	Looks up \cos^{-1} first, then ×2
(ii)	2 2 2 2π	B1 B1 [2]	y always +ve, m always -ve. from $(0, 8)$ to $(2\pi, 2)$ (may be implied)
(iii)	No turning point on graph or 1:1	B1 [1]	cao, independent of graph in (ii)
(iv)	$y = 5 + 3\cos\left(\frac{1}{2}x\right)$	M1	Tries to make <i>x</i> subject.
	Order; -5 , $\div 3$, \cos^{-1} , $\times 2$	M1	Correct order of operations
	$x = 2\cos^{-1}\left(\frac{x-5}{3}\right)$	A1 [3]	cao

Page 8	Mark Scheme		Paper
	Cambridge International AS/A Level – May/June 2015	9709	11

9	$y = x^3 + px^2$		
(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 2px$	B1	cao
	Sets to $0 \to x = 0$ or $-\frac{2p}{3}$	M1	Sets differential to 0
	\rightarrow (0, 0) or $\left(-\frac{2p}{3}, \frac{4p^3}{27}\right)$	A1 A1 [4]	cao cao, first A1 for any correct turning point or any correct pair of <i>x</i> values. 2nd A1 for 2 complete TPs
(ii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6x + 2p$	M1	Other methods include; clear demonstration of sign change of gradient, clear reference to the shape of the curve
	At $(0,0) \rightarrow 2p$ +ve Minimum	A1	www
	At $\left(-\frac{2p}{3}, \frac{4p^3}{27}\right) \rightarrow -2p$ -ve Maximum	A1 [3]	
(iii)	$y = x^3 + px^2 + px \rightarrow 3x^2 + 2px + p (= 0)$	B1	
	Uses $b^2 - 4ac$ $\rightarrow 4p^2 - 12p < 0$	M1	Any correct use of discriminant
	$\rightarrow 4p^2 - 12p < 0$ $\rightarrow 0$	A1 [3]	cao (condone ≤)

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9709	11

10	$y = \frac{8}{\sqrt{3x+4}}$		
(i)	$\frac{dy}{dx} = \frac{-4}{(3x+4)^{\frac{3}{2}}} \times 3 \text{aef}$	B1 B1	Without the "×3" For "×3" even if 1st B mark lost.
	$\rightarrow m_{(x=0)} = -\frac{3}{2} \text{ Perpendicular } m_{(x=0)} = \frac{2}{3}$	M1	Use of $m_1 m_2 = -1$ after attempting to find $\frac{dy}{dx}$ (x=0)
	Eqn of normal $y-4=\frac{2}{3}(x-0)$	M1	Unsimplified line equation
	Meets $x = 4$ at $B\left(4, \frac{20}{3}\right)$	A1 [5]	cao
(ii)	$\int \frac{8}{\sqrt{(3x+4)}} \mathrm{d}x = \frac{8\sqrt{(3x+4)}}{\frac{1}{2}} \div 3$	B1 B1	Without "÷3". For "÷3"
	Limits from 0 to 4 \rightarrow Area $P = \frac{32}{3}$	M1 A1	Correct use of correct limits. cao
	Area $Q = \text{Trapezium} - P$ Area of Trapezium = $\frac{1}{2} \left(4 + \frac{20}{3} \right) \times 4 = \frac{64}{3}$	M1	Correct method for area of trapezium
	\rightarrow Areas of <i>P</i> and <i>Q</i> are both $\frac{32}{3}$	A1 [6]	All correct.