PMT

June 2004

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 9709/01

MATHEMATICS Paper 1 (Pure 1)

	Page 1	Mark Scheme			Syllabus	Paper]	
	A AND AS LEV		S LEVEL	– JUNE	2004	9709	1]
1.	(i) $a/(1-r) = 256$ and $a = 64$ $\rightarrow r = \frac{3}{4}$ (ii) $S_{10} = 64(1-0.75^{10})$ (1-0.75) $\rightarrow S_{10} = 242$		M ^r A1 M ^r A1	[2]	Use of correct formula Correct only Use of correct formula – 0.75 ¹⁰ not 0.75 ⁹ Correct only			
2.	$\int_{0}^{1} \sqrt{3x+1} dx = 0$	$(3x+1)^{1.5} \div 1.5$	B1		MI for $(3x+1)^{1.5}$:	+1.5		
		then 3	M		For division by 3			
	→[]at 1 – []	at 0	M	l	Must attempt [] a and be using an ir	t x=0 (not a ntegrated fu	ssume it is nction	0)
	→ 16/9 – 2/9 =	= 14/9 or 1.56	A1	[4]	Fraction or decim	al. (1.56+C	loses this A	1)
3.	(i) $\sin^2 \theta$ + 3sin divides by co $\rightarrow \tan^2 \theta$ + 3	$\theta \cos \theta = 4\cos^2 \theta$ $\cos^2 \theta$ Stan $\theta = 4$	M ² A1	[2]	Knowing to divide Correct quadratic	by cos ² θ (not nec = 0))	
	(ii) Solution tan	$\theta = 1$ or tan $\theta = -4$	M	[-]	Correct solution o	f quadratic :	= 0	
	$\rightarrow \theta$ = 45° c	or 104.0°	A1	A1 [3]	Correct only for ea	ach one.		
4.	(i) Coeff of x ³ = =	6C3 x 2 ³ 160	B1 B1	B1 [3]	B1 for 6C3 B1 fo B1 for 160	or 2 ³		
)	(ii) Term in $x^2 =$	$6C2 \times 2^2 = 60$	B1		B1 for 60 (could b	e given in (i))	
	reqd coeff =	1 x (i) – 3 x 60	M	l	Needs to conside	r 2 terms		
	→ - 20		A1	[3]	со			
5.	6 F	A A A A A A A A A A A A A A A A A A A						
	 (i) Area of sector Area of trian → Shaded a 	or = $\frac{1}{2} 6^2 0.8$ (1 agle = $\frac{1}{2} .10^2 .sin0.8$ (3 area = 21.5	I4.4) M [*] 35.9) M [*] A1	[3]	Use of ½r ² θ with Use of ½absinC c Correct only	radians or ½ bh with	trig	
	(ii) Arc length = CD (by cos → Perimete	6 x 0.8 (rule) or 2 x 10sin0.4 (er = 8 + 4.8 + 7.8 = 20.6	(4.8) M ² (7.8) M ² 6 A1	A1	Use of s=rθ with r Any correct metho Correct only	adians od – allow if	in (i)	

	Page 2	Mark Scheme				Syllabus	Paper	
	A AND AS LEV			L – JUNE 2004 9709			1	
6.	(i) eliminates x (or y) completely $\rightarrow x^2+x-6=0 \text{ or } y^2-17y+66=0$ Solution of quadratic = 0 \rightarrow (2, 6) and (-3, 11)		M1 A1 DM1 A1	[4]	Needs x or y removed completely Correct only (no need for = 0) Equation must = 0. Everything ok.			
	(ii) Midpoint = $(-\frac{1}{2}, \frac{8\frac{1}{2}}{2})$ Gradient of line = -1 Gradient of perpendicular = 1 $\rightarrow y - \frac{8\frac{1}{2}}{2} = 1 (x + \frac{1}{2})$ (or y = x + 9)		B1 √ M1 M1 A1	l [4]	For his two points in (i) Use of y-step x-step (beware fortuitous) Use of $m_1m_2 = -1$ Any form – needs the M marks.			
7.	 (i) Differentiate Gradient of Gradient of Eqn of norm If y = 0, x = 	y=18/x → -18x ⁻² tangent = $-\frac{1}{2}$ normal = 2 nal y-3 = 2(x-6) (y=2x-9) 4 ¹ / ₂	M1 A1 DM1 DM1 A1		Any attempt at diff For $-\frac{1}{2}$ Use of m ₁ m ₂ = -1 Correct method fo Ans given – bewa	ferentiation r eqn of line re fortuitous	answers.	
	(ii) Vol = $\pi \int_{-\infty}^{32} \frac{32}{x}$	$\frac{24}{c^2}dx = \pi \left[-324x^{-1}\right].$	[M1 A1	[5]	Use of $\int y^2 dx$ for	M. correct	(needs π) for A	
	$-54 \pi7$	$2\pi = 18\pi$	A1	[4]	Beware fortuitous	answers (ar	ıs given)	
8.	(i) $2h + 2r + \pi$ $\rightarrow h = 4 - r$	$r = 8$ $-\frac{1}{2}\pi r$	M1 A1	[2]	Reasonable atterr correct formula for Co in any form wit	npt at linking r ½C or C. h h subject.	4 lengths +	
	(ii) A=2rh+ $\frac{1}{2}\pi$ \rightarrow A = 8r - (iii) dA/dr = 8 -	$r^{2} \rightarrow A = r(8-2r-\pi r) + \frac{1}{2}\pi r^{2}$ $2r^{2} - \frac{1}{2}\pi r^{2}$ $4r - \pi r$	M1 A1 M1 A	[2] A1	Adds rectangle + Co beware fortuito Knowing to differe	½xcircle (eq ous answers entiate + som	n on own ok) (ans given) ne attempt	
	= 0 when r (iv) d ² A/dr ² = – This is nega	= 1.12 (or 8/(4+ π)) 4 - π ative \rightarrow Maximum	DM1 A [M1 A1	A1 [4] [2]	Setting his dA/dr t Looks at 2 nd differ complete method. Correct deduction correct.	o 0. Decima ential or othe but needs d	l or exact ok. er valid ² A/dr ²	

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2004	9709	1

$9.\overrightarrow{OA} = \begin{pmatrix} 1\\3\\-1 \end{pmatrix}, \overrightarrow{OB} = \begin{pmatrix} 3\\-1\\3 \end{pmatrix}, \overrightarrow{OC} = \begin{pmatrix} 4\\2\\p \end{pmatrix}, \overrightarrow{OD} = \begin{pmatrix} -1\\0\\q \end{pmatrix}$		Condone notation throughout.		
		Allow column vectors or i , j , k throughout		
(i) $\overrightarrow{AB} = \mathbf{b} - \mathbf{a} = 2\mathbf{i} - 4\mathbf{j} + 4\mathbf{k}$	M1	Use of b–a, rather than b+a or a–b		
Unit vector = $(2i - 4j + 4k) \sqrt{(2^2 + 4^2 + 4^2)}$	M1	Dividing by the modulus of "his" \overrightarrow{AB}		
$= \pm (2\mathbf{i} - 4\mathbf{j} + 4\mathbf{k}) 6$	A1 [3]	Co (allow – for candidates using a–b)		
(ii) $\overrightarrow{OA.OC} = 4 + 6 - p$ = 0 for 90° $\rightarrow p = 10$	M1 DM1 A1 [3]	Use of $x_1x_2 + y_1y_2 + z_1z_2$ Setting to 0 + attempt to solve co		
(iii) $(-2)^2 + 3^2 + (q+1)^2 = 7^2$	M1	Correct method for length with ± d–a, d+a		
\rightarrow (q+1) ² = 36 or q ² + 2q = 35	A1	Correct quadratic equation		
q = 5 and q = –7	DM1 A1 or B1 B1 [4]	Correct method of solution. Both correct. Or B1 for each if (q+1) ² =36, q=5 only.		
10. f: $x \mapsto x^2 - 2x$, g: $x \mapsto 2x + 3$				
(i) x ² − 2x − 15 = 0 End-points −3 and 5	M1 A1	Equation set to 0 and solved. Correct end-points, however used		
\rightarrow x < –3 and x > 5	A1	Co-inequalities – not ≤ or ≥		
(ii) Uses dy/dx = $2x-2 = 0$ or $(x-1)^2 - 1$ Minimum at x = 1 or correct form	[3] M1 A1	Any valid complete method for x value Correct only		
Range of y is $f(x) \ge -1$	A1	Correct for his value of "x" – must be ≥		
No inverse since not 1 : 1 (or equivalent)	B1	Any valid statement.		
(iii) gf(x) = $2(x^2 - 2x) + 3$ ($2x^2 - 4x + 3$)	M1	Must be gf not fg – for unsimplified ans.		
$b^2 - 4ac = 16 - 24 = -8 \rightarrow -ve$	M1	Used on quadratic=0, even if fg used.		
\rightarrow No real solutions.	A1 [3]	Must be using gf and correct assumption and statement needed		
[or gf(x)=0 \rightarrow f(x)=-3/2. Imposs from (ii)]	[0]			
(iv) $y = 2x + 3$ correct line on diagram	B2,1,0 [2]	3 things needed –B1 if one missing.g correct,		
Either inverse as mirror image in y=x or y = $g^{-1}(x) = \frac{1}{2}(x-3)$ drawn		 g⁻¹ correct – not parallel to g y=x drawn or statement re symmetry 		
DM1 for quadratic equation. Equation must be set to 0.				

Formula \rightarrow must be correct and correctly used – allow for numerical errors though in b² and –4ac. Factors \rightarrow attempt to find 2 brackets. Each bracket then solved to 0. PMT