CAMBRIDGE INTERNATIONAL EXAMINATIONS

June 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT: 9709/01

MATHEMATICS Paper 1 (Pure 1)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	1

1.	$(2x - 1/x)^5$. 4 th term needed. $\rightarrow {}_5C_3 = 5.4/2$ $\rightarrow x 2^2 x (-1)^3$ $\rightarrow -40$	M1 DM1 A1 [3]	Must be 4^{th} term – needs $(2x)^2 (1/x)^3$ Includes and converts ${}_5C_2$ or ${}_5C_3$ Co Whole series given and correct term not quoted, allow 2/3
2. and and	sin3x + 2cos3x = 0 tan3x = -2 x = 38.9 (8) x = 98.9 (8) x = 158.9 (8)	M1 A1 A1√ A1√ [4]	Use of tan = sin ÷ cos with 3x Co For 60 + "his" For 120 + "his" and no others in range (ignore excess ans. outside range) Loses last A mark if excess answers in the range
NB. sı But sir s ² + c ² Alt. √5 OK	$n^{-3}x + \cos^{-3}x = 0$ etc. M0 $n^{2}3x = (-2\cos 3x)^{2}$ plus use of $a^{2} = 1$ is OK $\sin(3x + \alpha)$ or $\sqrt{5}\cos(3x - \alpha)$ both		
3.	(a) dy/dx = $4 - 12x^{-3}$	B2, 1 [2]	One off for each error (4, -, 12, -3)
(a) (qu co)	(b) $\int = 2x^2 - 6x^{-1} + c$ notient OK M1 correct formula, A1	3 x B1 [3]	One for each term – only give +c if obvious attempt at integration
4.	$a = -10 a + 14d = 11 d = \frac{3}{2}$	M1	Using a = $(n - 1)d$
	a + (n – 1)d = 41 n = 35	M1 A1	Correct method – not for a + nd Co
Either	$S_n = n/2(2a + (n - 1)d) \text{ or } n/2(a + 1)$ = 542.5	M1 A1 [5]	Either of these used correctly For his d and any n
5.	(i) 2a + b = 1 and 5a + b = 7 → a = 2 and b = -3	M1 A1 [2]	Realising how one of these is formed Co
	(ii) $f(x) = 2x - 3$ $ff(x) = 2(2x - 3) - 3$ $\rightarrow 4x - 9$ = 0 when x = 2.25	M1 DM1 A1 [3]	Replacing "x" by "his ax + b" and "+b" For his a and b and solved = 0 Co

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	1

6.	(i) 3^{4} $\pi \rightarrow x$	B2, 1 [2]	For complete cycle, shape including curves, not lines, -3 to +3 shown or implied, for $-\pi$ to π . Degrees ok
	(ii) $x = \pi/2$, $y = 3$ (allow if 90°) $\rightarrow k = 6/\pi$ co.	M1 A1 [2]	Realising maximum is $(\pi/2, 3)$ + sub Co (even if no graph)
	(iii) (- $\pi/2$, -3) – must be radians	B1 [1]	Co (could come from incorrect graph)
7.	(i) Gradient of L ₁ = -2 Gradient of L ₂ = $\frac{1}{2}$ Eqn of L ₂ y - 4 = $\frac{1}{2}(x - 7)$	B1 M1 M1A1√ [4]	Co – anywhere Use of $m_1m_2 = -1$ Use of line eqn – or y = mx + c. Line must be through (7, 4) and non- parallel
	(ii) Sim Eqns $\rightarrow x = 3, y = 2$	M1 A1	Solution of 2 linear eqns
	AB = $\sqrt{(2^2 + 4^2)} = \sqrt{20}$ or 4.47	M1A1 [4]	Correct use of distance formula. Co
8.	(i) $\overrightarrow{BA} = \mathbf{a} - \mathbf{b} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k}$ $\overrightarrow{BC} = \mathbf{c} - \mathbf{b} = -2\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$ Dot product = $-2 + 8 - 6 = 0$ \rightarrow Perpendicular	M1 M1A1 A1 [4]	Knowing how to use position vector for \overrightarrow{BA} or \overrightarrow{BC} – not for \overrightarrow{AB} or \overrightarrow{CB} Knowing how to use $x_1y_1 + x_2y_2 + x_3y_3$. Co Correct deduction. Beware fortuitous (uses \overrightarrow{AB} or \overrightarrow{CB} – can get 3 out of 4)
	(ii) $\overrightarrow{BC} = \mathbf{c} - \mathbf{b} = -2\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$ $\overrightarrow{AD} = \mathbf{d} - \mathbf{a} = -5\mathbf{i} + 10\mathbf{i} + 5\mathbf{k}$	M1	Knowing how to get one of these
	These are in the same ratio \ parallel	M1	Both correct + conclusion. Could be dot product = $60 \rightarrow angle = 0^{\circ}$
	Ratio = 2:5 (or √24: √150)	M1A1 [4]	Knowing what to do. Co. Allow 5:2

PMT

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	1

9.	B 8 0 C		
	(i) θ = 1 angle BOC = π - θ Area = $\frac{1}{2}r^2\theta$ = 68.5 or 32(π -1) (or $\frac{1}{2}$ circle-sector)	B1 M1 A1 [3]	For π - θ or for $\frac{1}{2}\pi r^2$ – sector Use of $\frac{1}{2}r^2\theta$ Co NB. 32 gets M1 only
	(ii) $8 + 8 + 8\theta = \frac{1}{2}(8 + 8 + 8(\pi - \theta))$ Solution of this eqn	M1 M1	Relevant use of s = r θ twice Needs θ – collected – needs
	\rightarrow 0.381 or $^{1}/_{3}(\pi$ -2)	A1 [3]	Co.
	(iii) $\theta = \pi/3$ AB = 8cm BC = 2 x 8sin $\pi/3$ = 8 $\sqrt{3}$	B1 M1	Co. Valid method for BC – cos rule, Pyth
	Perimeter = 24 + $8\sqrt{3}$	A1 [3]	allow decimals here Everything OK. Answer given NB. Decimal check loses this mark
10.	y = √(5x + 4)		
	(i) $dy/dx = \frac{1}{2}(5x + 4)^{-\frac{1}{2}} \times 5$ x = 1, $dy/dx = \frac{5}{6}$	B1B1 B1 [3]	$\frac{1}{2}(5x + 4)^{-\frac{1}{2}} \times 5$ B1 for each part Co
	(ii) $dy/dt = dy/dx \times dx/dt$	M1	Chain rule correctly used
	$= 5/6 \times 0.03$ $\rightarrow 0.025$	A1√ [2]	For (i) x 0.03
	(iii) realises that area \rightarrow integration	M1	Realisation + attempt – must be $(5x + 4)^{k}$
	$\int = (5x+4)^{3/2} \div {}^{3}/_{2} \div 5$	A1A1	For $(5x + 4)^{3/2} \div {}^{3}/_{2}$. For $\div 5$
	Use of limits \rightarrow 54/15 - 16/15 = 38/15 = 2.53	DM1 A1 [5]	Must use "0" to "1" Co

PMT

Page 4	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	1

11.	(i) $8x - x^2 = a - x^2 - b^2 - 2bx + equating \rightarrow b = -4a = b^2 = 16 (i.e. 16 - (x - 4)^2)$	M1 B1 A1 [3]	Knows what to do – some equating Anywhere – may be independent For 16- () ²
	 (ii) dy/dx = 8 – 2x = o when → (4, 16) (or from –b and a) 	M1 A1 [2]	Any valid complete method Needs both values
	(iii) $8x - x^2 \ge -20$ $x^2 - 8x - 20 = (x - 10)(x + 2)$ End values -2 and 10 Interval $-2 \le x \le 10$ g: $x \to 8x - x^2$ for $x \ge 4$	M1 A1 A1 [3]	Sets to 0 + correct method of solution Co – independent of < or > or = Co – including \leq (< gets A0)
	(iv) domain of g^{-1} is $x \le 16$ range of g^{-1} is $g^{-1} \ge 4$	B1√ B1 [2]	From answer to (i) or (ii). Accept <16 Not f.t since domain of g given
	(v) $y = 8x - x^2 \rightarrow x^2 - 8x + y = 0$	M1	Use of quadratic or completed square expression to make x subject
or (x –	$x = 8 \pm \sqrt{(64 - 4y)} \div 2$ g ⁻¹ (x) = 4 + $\sqrt{(16 - x)}$ 4) ² = 16 - y \rightarrow x = 4 + $\sqrt{(16 - y)}$ \rightarrow y = 4 + $\sqrt{(16 - x)}$	DM1 A1 [3]	Replaces y by x Co (inc. omission of -)