

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS

9709/22

Paper 2 Pure Mathematics 2

February/March 2022

1 hour 15 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has 12 pages.

•••••	•••••	••••••	•••••	•••••	••••••	••••••	•••••	••••••	•••••	••••••
•••••			•••••			•••••			•••••	
		••••••			•	•	•••••	•	•••••	•
						•••••				
•••••	•••••	•••••	•••••		••••••	•••••	•••••	•••••	•••••	
		•••••	•••••	•••••	••••••	•••••		•••••	•••••	•••••
•••••	•••••••	••••••	•••••		••••••	••••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •
		•••••	•••••		••••••	•••••	•••••	•••••	•••••	
		•••••								
•••••	••••••	••••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••	•••••	••••••
•••••	•••••	••••••	•••••		••••••	••••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••	•••••	•••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••
			•••••			•••••				
•••••	•••••	•••••	•••••		••••••	•••••	•••••	••••••	•••••	••••••

$y = mx + \epsilon$:.									
•••••		•••••	•••••	•••••	•••••	••••••	••••••	••••••	••••••	••••
				•••••						
••••••		••••••	••••••	•••••	•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••
				•••••	•••••					
		•••••		•••••	•••••					••••
				•••••						
•••••		•••••		•••••	•••••		••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••
•••••		•••••	•••••	•••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••
				•••••						
•••••	,	•••••	••••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	.
				•••••						
•••••		•••••	••••••	••••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	
••••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••
				•••••						
				•••••		•••••	• • • • • • • • • • • • • • • • • • • •			
				•••••	•••••		•••••		•••••	••••

3

(a)	Find the value of a correct to 3 significant figures. [3]
(b)	Hence find the value of x when $y = 36$. Give your answer correct to 3 significant figures. [2]

© UCLES 2022 9709/22/F/M/22

(a)	Show that $\sin 2\theta \cot \theta - \cos 2\theta \equiv 1$.	[3]
		••••••
		•••••
(1.)		F21
(b)	Hence find the exact value of $\sin \frac{1}{6}\pi \cot \frac{1}{12}\pi$.	[2]
		••••••
(c)	Find the smallest positive value of θ (in radians) satisfying the equation	
	$\sin 2\theta \cot \theta - 3\cos 2\theta = 1.$	[2]
		••••••
		••••••

	Given that $y = \tan^2 x$, show that $\frac{dy}{dx} = 2 \tan x + 2 \tan^3 x$.
	1
(b)	Find the exact value of $\int_{\frac{1}{4}\pi}^{\frac{1}{3}\pi} (\tan x + \tan^2 x + \tan^3 x) dx.$
(b)	Find the exact value of $\int_{\frac{1}{4}\pi}^{\frac{\pi}{3}} (\tan x + \tan^2 x + \tan^3 x) dx$.
(b)	Find the exact value of $\int_{\frac{1}{4}\pi}^{\frac{\pi}{3}} (\tan x + \tan^2 x + \tan^3 x) dx$.
(b)	Find the exact value of $\int_{\frac{1}{4}\pi}^{\frac{\pi}{3}} (\tan x + \tan^2 x + \tan^3 x) dx$.
(b)	Find the exact value of $\int_{\frac{1}{4}\pi}^{\frac{\pi}{3}} (\tan x + \tan^2 x + \tan^3 x) dx$.
(b)	Find the exact value of $\int_{\frac{1}{4}\pi}^{\frac{\pi}{3}} (\tan x + \tan^2 x + \tan^3 x) dx$.
(b)	Find the exact value of $\int_{\frac{1}{4}\pi}^{\frac{2}{3}\pi} (\tan x + \tan^2 x + \tan^3 x) dx.$
(b)	
(b)	Find the exact value of $\int_{\frac{1}{4}\pi}^{\frac{\pi}{4}} (\tan x + \tan^2 x + \tan^3 x) dx$.
(b)	

•••••	 	••••••		 •••••
••••••	 	••••••	•••••	 •••••
••••••	 	••••••	•••••	 •••••
	 			 •••••
	 			 •••••
•••••	 	••••••	•••••	 •••••
	 		•••••	

6 The polynomia	l p(x) is defined by
------------------------	----------------------

$$p(x) = 4x^3 + 16x^2 + 9x - 15.$$

(a)	Find the quotient when $p(x)$ is divided by $(2x + 3)$, and show that the remainder is -6 .						
		•••••					
		•••••					
		•••••					
(b)	Find $\int \frac{p(x)}{2x+3} \mathrm{d}x.$	[2]					
		••••••					
		•••••					

(c)	Factorise $p(x) + 6$ completely and hence solve the equation
	$p(\csc 2\theta) + 6 = 0$
	for $0^{\circ} < \theta < 135^{\circ}$. [5]

•••••	 •••••	 	•••••
	 •••••	 	

7	A curve has	equation	$e^{2x}y$ –	$e^{y} = 10$	00
---	-------------	----------	-------------	--------------	----

(a)	Show that $\frac{dy}{dx} = \frac{2e^{2x}y}{e^y - e^{2x}}$.	[3]
	Show that the curve has no stationary points.	
(b)	Show that the curve has no stationary points.	[2]
(b)	Show that the curve has no stationary points.	[2]
(b)	Show that the curve has no stationary points.	[2]
(b)	Show that the curve has no stationary points.	[2]
(b)	Show that the curve has no stationary points.	[2]
(b)	Show that the curve has no stationary points.	
(b)		

It is required to find the x-coordinate of P, the point on the curve at which the tangent is parallel to the y-axis.

(c)	Show that the <i>x</i> -coordinate of <i>P</i> satisfies the equation
	$x = \ln 10 - \frac{1}{2} \ln(2x - 1). $ [4]
(d)	Use an iterative formula, based on the equation in part (c), to find the <i>x</i> -coordinate of <i>P</i> correct to 3 significant figures. Use an initial value of 2 and give the result of each iteration to 5 significant figures.

© UCLES 2022 9709/22/F/M/22

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2022 9709/22/F/M/22