

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
FURTHER MATHEMA	ATICS		9231/12
Paper 1		0	ctober/November 2017
			3 hours
Candidates answer or	n the Question Paper.		
Additional Materials:	List of Formulae (MF10)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a calculator is expected, where appropriate.

Results obtained solely from a graphic calculator, without supporting working or reasoning, will not receive credit.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

Find $\sum_{r=1}^{n} (4r-3)(4r+1)$, giving your answer in its simplest form.	
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

2	Find the	general	solution	of the	differential	equation

$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2\frac{\mathrm{d}x}{\mathrm{d}t} + 5x = 4$	$-5t^2$.	[6]

4

(1) Snow that –	$\frac{d^{n+1}}{dx^{n+1}}(x^{n+1}\ln x) = \frac{d^n}{dx^n}(x^n + (n+1)x^n\ln x).$	
		••••••
(ii) Prove by ma	athematical induction that, for all positive integers n ,	
	$\frac{\mathrm{d}^n}{\mathrm{d}x^n}(x^n\ln x) = n!\left(\ln x + 1 + \frac{1}{2} + \dots + \frac{1}{n}\right).$	
••••••		
•••••		

i)	Find the value of $(\alpha + 1)(\beta + 1)(\gamma + 1)$.	[4
	Find the value of $(\beta + \gamma)(\gamma + \alpha)(\alpha + \beta)$.	[4
)	Find the value of $(\beta + \gamma)(\gamma + \alpha)(\alpha + \beta)$.	[4
,		[4
•		[4
•		[4
,		[4
		[4
•		[4
		[4
)		[4
		[4
ii)		[4

5	The curve	C has	equation	$2x^{3} +$	$-3x^2y -$	$3y^{3}$ –	16 =	0
---	-----------	-------	----------	------------	------------	------------	------	---

	rdinates of the p		dx	
•••••				
••••••		•••••	•••••	
		•••••		 •••••

© UCLES 2017

ind the value of $\frac{d^2y}{dx^2}$ at A.	

Find the area of the triangle <i>ABC</i> .	[4

	•••••	•••••		••••••	
••••••			•••••		
•••••	•••••	•••••	•••••		
		••••••	•••••	•••••	
	•••••				
Find the cartes	gian equation (of the plane th	rough A. R and C		
Find the cartes	sian equation (of the plane th	rough A,B and $oldsymbol{C}$	C.	
Find the cartes	sian equation	of the plane th	rough A,B and $oldsymbol{C}$	C.	
Find the cartes	sian equation	of the plane th	rough A,B and C	C.	
Find the cartes	sian equation	of the plane th	rough A,B and C	C.	
Find the cartes	sian equation	of the plane th	rough A,B and C	Z.	
Find the cartes	sian equation	of the plane th	rough A,B and C	C.	
Find the cartes	sian equation	of the plane th	rough A, B and C	C.	
Find the cartes	sian equation	of the plane th	rough A,B and C	C.	
Find the cartes	sian equation	of the plane th	rough A, B and C	C.	
Find the cartes	sian equation	of the plane th	rough A, B and C	C.	
Find the cartes	Sian equation	of the plane th	rough A, B and C	Z.	

7 The linear transformation $T : \mathbb{R}^4 \to \mathbb{R}^4$ is represented by the matrix **A**, where

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & -2 & 3 \\ 5 & -3 & -4 & 25 \\ 6 & -4 & -6 & 28 \\ 7 & -5 & -8 & 31 \end{pmatrix}.$$

Find the rank of A and a basis for the null space of T.	[7]

	$/-1$ \ / 3\
	Find the matrix product $\mathbf{A} \begin{pmatrix} -1\\1\\-1\\1 \end{pmatrix}$ and hence find the general solution of the equation $\mathbf{A}\mathbf{x} = \begin{pmatrix} 3\\21\\24\\27 \end{pmatrix}$
(ii)	Find the matrix product A $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and hence find the general solution of the equation $Ax = \begin{bmatrix} 21 \\ 1 \end{bmatrix}$
()	$\begin{bmatrix} -1 \end{bmatrix}$ and hence and the general solution of the equation $\begin{bmatrix} 24 \end{bmatrix}$
	\ 1 /
	[3]

8	Let $I_n = \int_0^{\frac{1}{4}\pi}$	$\sec^n x \mathrm{d}x \text{ for } n > 0$
---	-------------------------------------	--

(i)	Find the value of I_2 .	[2]
(ii)	Show that, for $n > 2$,	
	$(n-1)I_n = 2^{\frac{1}{2}n-1} + (n-2)I_{n-2}.$	[5]

2π radians about the x-axis.

9 The curve C has equation

$$y = \frac{3x - 9}{(x - 2)(x + 1)}.$$

(i)) Find the equations of the asymptotes of C .	[2]
(ii)) Show that there is no point on C for which $\frac{1}{3} < y < 3$.	[4]

© UCLES 2017

(iii)	Find the coordinates of the turning points of C .	[3]
(iv)	Sketch C.	[3]

	10	(i)	Use de	Moivre's	theorem	to	show	tha
--	----	-----	--------	----------	---------	----	------	-----

$\sin 5\theta = 5\sin \theta - 20\sin^3 \theta + 16\sin^5 \theta.$	[5]
	•••••
	•••••

Hence expla	in why the roots o	of the equation 1	$6x^4 - 20x^2 + 5$	$= 0$ are $x = \pm \sin \frac{\pi}{2}$	$\frac{1}{5}\pi \text{ and } x = \pm \sin \frac{2}{5}\pi$ [3]
Without usir	ng a calculator, fi	nd the exact valu	ies of		
Williout usin		$\sin \frac{3}{5}\pi \sin \frac{4}{5}\pi$ an		$\sin^2(\frac{2}{5}\pi).$	[4
•••••					••••••
•••••					••••••
•••••					
•••••					

11 Answer only **one** of the following two alternatives.

EITHER

(i)	The vector \mathbf{e} is an eigenvector of the matrix \mathbf{A} , with corresponding eigenvalue λ , and is also eigenvector of the matrix \mathbf{B} , with corresponding eigenvalue μ . Show that \mathbf{e} is an eigenvector the matrix $\mathbf{A}\mathbf{B}$ with corresponding eigenvalue $\lambda\mu$.	o an or of [3]
		•••••
		•••••
		•••••
(ii)	Find the eigenvalues and corresponding eigenvectors of the matrix \mathbf{A} , where	
	0 1 2	
	$\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 3 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}.$	[6]
	$\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 3 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}.$	[6]
	$\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 3 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}.$	[6]
	$\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 3 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}.$	[6]
	$\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 3 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}.$	[6]
	$\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 3 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}.$	[6]
	$\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 3 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}.$	[6]
	$\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 3 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}.$	[6]
	$\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 3 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}.$	[6]
	$\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 3 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}.$	[6]
	$\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 3 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}.$	[6]

		••••••		••••••	
	 			•••••	
•••••	 	••••••	•••••	•••••	•••••
	 			•••••	••••••
	 				•••••••
•••••	 				
	 	•••••			
	 				•••••
	 	•••••			
•••••	 	•••••			••••••
	 	•••••			

(iii)	The	matrix	В,	where
-------	-----	--------	----	-------

	13	6	1 \	
$\mathbf{B} =$	1	-2	$\begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}$,
	\ 6	6	-2 /	

(0 0 27
has eigenvectors $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$. Find the eigenvalues of the matrix \mathbf{AB} , and state
corresponding eigenvectors. [4]

•	1	n
ľ	J.	ĸ

The polar equation of a curve C is $r = a(1 + \cos \theta)$ for $0 \le \theta < 2\pi$, where a is a positive constant.

(i) Sketch C. [2]

(ii) Show that the cartesian equation of C is

$x^2 + y^2 = a(x + \sqrt{(x^2 + y^2)}).$	[2]

•	•••••
	•••••
•	 •••••
•	
	•••••
•	•••••
•	•••••
•	 •••••
•	

(iv)	Find the arc length of C between the point where $\theta = 0$ and the point where $\theta = \frac{1}{3}\pi$.			
		•		
		•••••		

24

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.