# Cambridge International AS & A Level

| CANDIDATE<br>NAME |  |  |                     |  |  |
|-------------------|--|--|---------------------|--|--|
| CENTRE<br>NUMBER  |  |  | CANDIDATE<br>NUMBER |  |  |

# \* 4 0 0 5 9 7 3 6 5 6

### **FURTHER MATHEMATICS**

9231/23

Paper 2 Further Pure Mathematics 2

May/June 2020

2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

### **INSTRUCTIONS**

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

### **INFORMATION**

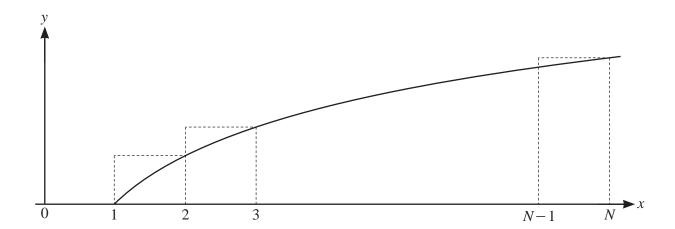
- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [ ].

This document has 16 pages. Blank pages are indicated.

| $\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} - 8\frac{\mathrm{d}x}{\mathrm{d}t} - 9x = 9\mathrm{e}^{8t}.$ | [6 |
|----------------------------------------------------------------------------------------------------|----|
| <br>                                                                                               |    |
|                                                                                                    |    |
| <br>                                                                                               |    |
|                                                                                                    |    |
|                                                                                                    |    |
|                                                                                                    |    |
| <br>                                                                                               |    |
| <br>                                                                                               |    |
| <br>                                                                                               |    |
| <br>                                                                                               |    |
|                                                                                                    |    |
| <br>                                                                                               |    |
|                                                                                                    |    |
| <br>                                                                                               |    |
|                                                                                                    |    |
|                                                                                                    |    |
|                                                                                                    |    |

| (a)   | Show that 32 | $V_n = 1 - 4^n e$ | $-3 + 3nI_{n-1}$ . |                                         |           |        |
|-------|--------------|-------------------|--------------------|-----------------------------------------|-----------|--------|
| ••••• |              |                   |                    |                                         | <br>      |        |
| ••••• | •••••        | •••••             |                    |                                         | <br>••••• |        |
| ••••• |              |                   |                    |                                         | <br>      |        |
|       |              |                   |                    |                                         | <br>      |        |
|       |              |                   |                    |                                         |           |        |
|       |              |                   |                    |                                         |           |        |
| ••••• | •••••        | •••••             | •••••              | • • • • • • • • • • • • • • • • • • • • | <br>••••• | •••••  |
| ••••• |              |                   |                    |                                         | <br>      |        |
| ••••• |              |                   |                    |                                         | <br>      |        |
|       |              |                   |                    |                                         | <br>      |        |
|       |              |                   |                    |                                         |           |        |
| ••••• | ••••••       | •••••••           | ••••••             |                                         |           | •••••• |
|       |              |                   |                    |                                         |           |        |
|       |              |                   |                    |                                         | <br>      |        |
| (b)   | Find the exa | ct value of I     | 72.                |                                         | <br>      |        |
| (b)   | Find the exa | ct value of I     | 72.                |                                         |           |        |
| (b)   | Find the exa | ct value of I     | 72.                |                                         |           |        |
| (b)   | Find the exa | ct value of I     | 72.                |                                         |           |        |
|       |              |                   |                    |                                         |           |        |
|       |              |                   |                    |                                         |           |        |
|       |              |                   |                    |                                         |           |        |
|       |              |                   |                    |                                         |           |        |
|       |              |                   |                    |                                         | <br>      |        |
|       |              |                   |                    |                                         |           |        |
|       |              |                   |                    |                                         |           |        |
|       |              |                   |                    |                                         |           |        |
|       |              |                   |                    |                                         |           |        |
|       |              |                   |                    |                                         |           |        |

| 3 | The | matrix | $\mathbf{A}$ | is | given | by |
|---|-----|--------|--------------|----|-------|----|
|   |     |        |              |    |       |    |


$$\mathbf{A} = \begin{pmatrix} 5 & -1 & 7 \\ 0 & 6 & 0 \\ 7 & 7 & 5 \end{pmatrix}.$$

| <br> |
|------|
| <br> |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
| <br> |
|      |
| <br> |

| <br> |
|------|
| <br> |
|      |
|      |
|      |
| <br> |
| <br> |
| <br> |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |

6

4



The diagram shows the curve with equation  $y = \ln x$  for  $x \ge 1$ , together with a set of (N-1) rectangles of unit width.

(a) By considering the sum of the areas of these rectangles, show that

| $ \ln N! > N \ln N - N + 1. $ | [5] |
|-------------------------------|-----|
|                               |     |
|                               |     |
|                               |     |
|                               |     |
|                               |     |
|                               |     |
|                               |     |
|                               |     |
|                               |     |
|                               |     |
|                               |     |
|                               |     |
|                               |     |
|                               |     |
|                               |     |
|                               |     |

| <br>   |
|--------|
|        |
| <br>   |
|        |
|        |
| <br>   |
|        |
|        |
|        |
| <br>   |
| <br>   |
| <br>   |
|        |
| <br>   |
|        |
|        |
|        |
| <br>   |
|        |
|        |
|        |
| •••••• |

| 5 The curve $C$ has p | parametric e | quations |
|-----------------------|--------------|----------|
|-----------------------|--------------|----------|

|  | $x = \frac{1}{2}t^2 - \ln t,$ | y=2t+1, | for $\frac{1}{2} \le t \le 2$ |
|--|-------------------------------|---------|-------------------------------|
|--|-------------------------------|---------|-------------------------------|

| (a) | Find the exact length of $C$ . | [5]                                     |
|-----|--------------------------------|-----------------------------------------|
|     |                                |                                         |
|     |                                |                                         |
|     |                                |                                         |
|     |                                |                                         |
|     |                                |                                         |
|     |                                |                                         |
|     |                                |                                         |
|     |                                |                                         |
|     |                                |                                         |
|     |                                |                                         |
|     |                                |                                         |
|     |                                |                                         |
|     |                                | . <b></b>                               |
|     |                                | · • • • • • • • • • • • • • • • • • • • |
|     |                                | · • • • • • •                           |
|     |                                | ,                                       |
|     |                                |                                         |
|     |                                |                                         |
|     |                                |                                         |
|     |                                | •••••                                   |
|     |                                | •                                       |
|     |                                | •••••                                   |
|     |                                |                                         |
|     |                                |                                         |
|     |                                |                                         |

| <br>g your answer. |        |        |       |
|--------------------|--------|--------|-------|
|                    |        |        |       |
| <br>               |        |        |       |
| <br>               |        |        |       |
| <br>               |        |        | ••••• |
| <br>               |        |        |       |
|                    |        |        |       |
|                    |        | •••••• | ••••• |
| <br>               |        |        | ••••• |
| <br>               |        |        |       |
| <br>•••••          |        |        | ••••• |
| <br>               |        |        |       |
|                    |        |        |       |
|                    | •••••  | •••••  | ••••• |
| <br>               |        |        |       |
| <br>•••••          |        |        | ••••• |
| <br>               |        |        |       |
|                    |        |        |       |
|                    |        |        |       |
| <br>•••••          | •••••• | •••••  | ••••• |
| <br>               |        |        |       |
| <br>•••••          |        |        | ••••• |
| <br>               |        |        |       |
| <br>               |        |        |       |
|                    |        |        |       |
| •••••              | •••••  | •••••  | ••••• |
| <br>               |        |        |       |
| <br>               |        |        | ••••• |
| <br>               |        |        |       |
|                    |        |        |       |
|                    |        |        |       |
|                    |        |        |       |

|            | $1 - \tanh^2 \theta = \operatorname{sech}^2 \theta.$                                                                               | [3] |
|------------|------------------------------------------------------------------------------------------------------------------------------------|-----|
|            |                                                                                                                                    |     |
|            |                                                                                                                                    |     |
|            |                                                                                                                                    |     |
|            |                                                                                                                                    |     |
|            |                                                                                                                                    |     |
|            |                                                                                                                                    |     |
| The        | variables $x$ and $y$ are such that $\tanh y = \cos\left(x + \frac{1}{4}\pi\right)$ , for $-\frac{1}{4}\pi < x < \frac{3}{4}\pi$ . |     |
| <b>(b)</b> | By differentiating the equation $\tanh y = \cos\left(x + \frac{1}{4}\pi\right)$ with respect to $x$ , show that                    |     |
|            | $\frac{\mathrm{d}y}{\mathrm{d}x} = -\operatorname{cosec}\left(x + \frac{1}{4}\pi\right).$                                          | [4] |
|            |                                                                                                                                    |     |
|            |                                                                                                                                    |     |
|            |                                                                                                                                    |     |
|            |                                                                                                                                    |     |
|            |                                                                                                                                    |     |
|            |                                                                                                                                    |     |
|            |                                                                                                                                    |     |
|            |                                                                                                                                    |     |
|            |                                                                                                                                    |     |
|            |                                                                                                                                    |     |
|            |                                                                                                                                    |     |
|            |                                                                                                                                    |     |

| $\frac{1}{2}\ln a + bx + cx^2$ , giving | g the exact values o | the constants $a, t$ | o and $c$ . |        |
|-----------------------------------------|----------------------|----------------------|-------------|--------|
|                                         |                      |                      |             |        |
|                                         |                      |                      |             |        |
|                                         |                      |                      |             |        |
|                                         |                      |                      |             |        |
|                                         |                      |                      |             | •••••  |
|                                         |                      |                      |             |        |
|                                         |                      |                      |             |        |
|                                         |                      |                      |             |        |
|                                         |                      |                      |             |        |
|                                         |                      |                      |             |        |
|                                         |                      |                      |             |        |
|                                         |                      |                      |             | •••••• |
|                                         |                      |                      |             |        |
|                                         |                      |                      |             |        |
|                                         |                      |                      |             |        |
|                                         |                      |                      |             |        |
| •••••                                   | •••••                |                      | •••••       |        |
|                                         |                      |                      |             |        |
|                                         |                      |                      |             |        |
|                                         |                      |                      |             |        |
|                                         |                      |                      |             |        |
| ••••••                                  |                      | •••••                | ••••••      | ,      |
|                                         |                      |                      |             |        |
|                                         |                      |                      |             |        |
| •••••                                   |                      |                      |             |        |
|                                         |                      |                      |             |        |
| •••••                                   |                      | •••••                | ••••••      |        |
|                                         |                      |                      |             |        |
|                                         |                      |                      |             |        |
|                                         |                      |                      |             | •••••  |
|                                         |                      |                      |             |        |
|                                         |                      |                      |             |        |
|                                         |                      |                      |             |        |
|                                         |                      |                      |             |        |
|                                         |                      |                      | •••••       |        |
|                                         |                      |                      |             |        |
|                                         |                      |                      |             |        |
|                                         |                      |                      |             |        |
|                                         |                      |                      |             |        |
|                                         |                      |                      |             | •••••  |
|                                         |                      |                      |             |        |

7 (a) Show that an appropriate integrating factor for

| $(x^{2}+1)\frac{dy}{dx} + y\sqrt{x^{2}+1} = x^{2} - x\sqrt{x^{2}+1}$ |      |
|----------------------------------------------------------------------|------|
| is $x + \sqrt{x^2 + 1}$ .                                            | [4]  |
|                                                                      | •••• |
|                                                                      | •••• |
|                                                                      | •••• |
|                                                                      | •••• |
|                                                                      | •••• |
|                                                                      |      |
|                                                                      |      |
|                                                                      |      |
|                                                                      |      |
|                                                                      |      |
|                                                                      |      |
|                                                                      | •••• |
|                                                                      | •••• |
|                                                                      | •••• |
|                                                                      | •••• |
|                                                                      | •••• |
|                                                                      | •••• |
|                                                                      | •••• |
|                                                                      |      |
|                                                                      |      |
|                                                                      | •••• |
|                                                                      |      |
|                                                                      |      |

|   | 13                                                                                 |
|---|------------------------------------------------------------------------------------|
| ) | Hence find the solution of the differential equation                               |
|   | $(x^{2}+1)\frac{dy}{dx} + y\sqrt{x^{2}+1} = x^{2} - x\sqrt{x^{2}+1}$               |
|   | for which $y = \ln 2$ when $x = 0$ . Give your answer in the form $y = f(x)$ . [7] |
|   |                                                                                    |
|   |                                                                                    |
|   |                                                                                    |
|   |                                                                                    |
|   |                                                                                    |
|   |                                                                                    |
|   |                                                                                    |
|   |                                                                                    |
|   |                                                                                    |
|   |                                                                                    |
|   |                                                                                    |
|   |                                                                                    |
|   |                                                                                    |
|   |                                                                                    |
|   |                                                                                    |
|   |                                                                                    |
|   |                                                                                    |
|   |                                                                                    |
|   |                                                                                    |
|   |                                                                                    |
|   |                                                                                    |
|   |                                                                                    |
|   |                                                                                    |

|       |                                                                                                                                                                                                |                   | •••• |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------|
|       |                                                                                                                                                                                                |                   | •••• |
|       |                                                                                                                                                                                                |                   |      |
|       |                                                                                                                                                                                                |                   |      |
|       |                                                                                                                                                                                                |                   | •••• |
|       |                                                                                                                                                                                                |                   | •••• |
|       |                                                                                                                                                                                                |                   |      |
|       |                                                                                                                                                                                                |                   |      |
|       |                                                                                                                                                                                                |                   | •••• |
|       |                                                                                                                                                                                                |                   | •••• |
|       |                                                                                                                                                                                                |                   | •••• |
|       |                                                                                                                                                                                                |                   |      |
|       |                                                                                                                                                                                                |                   | •••• |
|       |                                                                                                                                                                                                |                   | •••• |
|       |                                                                                                                                                                                                |                   |      |
|       |                                                                                                                                                                                                |                   |      |
|       |                                                                                                                                                                                                |                   | •••• |
|       |                                                                                                                                                                                                |                   | •••• |
|       |                                                                                                                                                                                                |                   |      |
|       |                                                                                                                                                                                                |                   |      |
|       |                                                                                                                                                                                                |                   |      |
|       |                                                                                                                                                                                                |                   | •••• |
| It is | given that $\cos^6 \theta = \frac{1}{32} (\cos 6\theta + 6\cos 4\theta + 15\cos 2\theta)$                                                                                                      | $2\theta + 10$ ). | •••• |
|       |                                                                                                                                                                                                |                   | •••• |
|       | given that $\cos^6 \theta = \frac{1}{32} (\cos 6\theta + 6\cos 4\theta + 15\cos 2\theta)$<br>Find the exact value of $\int_0^{\frac{1}{3}\pi} (\cos^6 (\frac{1}{4}x) + \sin^6 (\frac{1}{4}x))$ |                   |      |
|       |                                                                                                                                                                                                |                   |      |
|       |                                                                                                                                                                                                |                   |      |
|       |                                                                                                                                                                                                |                   |      |
|       |                                                                                                                                                                                                |                   |      |
|       |                                                                                                                                                                                                |                   |      |
|       |                                                                                                                                                                                                |                   |      |
|       |                                                                                                                                                                                                |                   |      |
|       |                                                                                                                                                                                                |                   |      |
|       |                                                                                                                                                                                                |                   |      |

| (c) | Express each root of the equation $16c^6 + 16(1-c^2)^3 - 13 = 0$ in the form $\cos k\pi$ , rational number. | where $k$ is a [5] |
|-----|-------------------------------------------------------------------------------------------------------------|--------------------|
|     |                                                                                                             |                    |
|     |                                                                                                             |                    |
|     |                                                                                                             |                    |
|     |                                                                                                             |                    |
|     |                                                                                                             |                    |
|     |                                                                                                             | •••••              |
|     |                                                                                                             | •••••              |
|     |                                                                                                             |                    |
|     |                                                                                                             |                    |
|     |                                                                                                             | •••••              |
|     |                                                                                                             |                    |
|     |                                                                                                             |                    |
|     |                                                                                                             |                    |
|     |                                                                                                             |                    |
|     |                                                                                                             | ••••••             |
|     |                                                                                                             | ••••••             |
|     |                                                                                                             | ••••••             |

16

## **Additional Page**

| If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown. |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |
|                                                                                                                                 |  |  |

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.