

Please write clearly ir	ı block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature	I declare this is my own work.	

A-level **MATHEMATICS**

Paper 1

Wednesday 3 June 2020

Afternoon

Time allowed: 2 hours

Materials

- You must have the AQA Formulae for A-level Mathematics booklet.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question.
 If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

For Examiner's Use				
Question	Mark			
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
TOTAL				

Answer all questions in the spaces provided.

1 The first three terms, in ascending powers of x, of the binomial expansion of $(9+2x)^{\frac{1}{2}}$ are given by

$$(9+2x)^{\frac{1}{2}} \approx a + \frac{x}{3} - \frac{x^2}{54}$$

where a is a constant.

1 (a) State the range of values of *x* for which this expansion is valid.

Circle your answer.

[1 mark]

$$|x| < \frac{2}{9}$$
 $|x| < \frac{2}{3}$ $|x| < 1$ $\left(|x| < \frac{9}{2}\right)$

3

$$(q+2x)^{\frac{1}{2}} = q^{\frac{1}{2}} (1+\frac{2}{9}x)^{\frac{1}{2}} = 3 (1+\frac{2}{9}x)^{\frac{1}{2}}$$
 valid for $|\frac{2}{9}x| \le 1 \Rightarrow 12x \le 9$
 $\Rightarrow 12x \le 9$

2

Find the value of a. 1 (b)

Circle your answer.

[1 mark]

9

$$(9+2x)^{\frac{1}{2}} = 3(1+\frac{2}{9}x)^{\frac{1}{2}}$$

$$= 3(1+(\frac{1}{2}\times\frac{2}{9})x+\cdots)$$

$$= 3+\frac{1}{3}x+\cdots$$
Hence, $\alpha=3$.

1

2 A student is searching for a solution to the equation f(x) = 0

He correctly evaluates

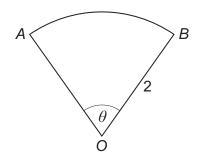
$$f(-1) = -1$$
 and $f(1) = 1$

and concludes that there must be a root between -1 and 1 due to the change of sign.

Select the function f(x) for which the conclusion is **incorrect**.

Circle your answer.

[1 mark]


$$f(x) = x$$

$$f(x) = x^3$$

$$f(x) = \frac{2x+1}{x+2}$$

 $f(x) = \frac{1}{x}$ f(x) = x $f(x) = x^3$ $f(x) = \frac{2x+1}{x+2}$ has no root between I and -1.

3 The diagram shows a sector OAB of a circle with centre O and radius 2

The angle AOB is θ radians and the perimeter of the sector is 6

Find the value of θ

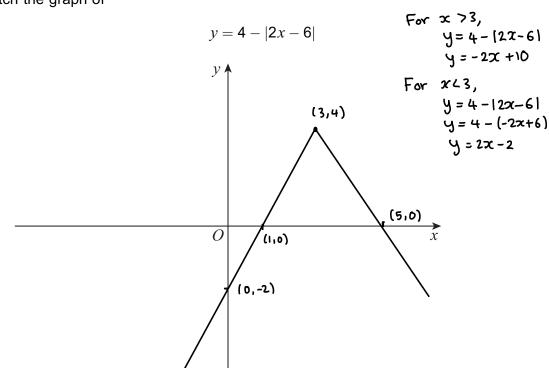
Circle your answer.

[1 mark]

$$\sqrt{3}$$

3

Length AB = 20


Turn over for the next question

4

Do not write outside the

For x=3, y=4.

[3 marks]

4 (b) Solve the inequality

$$4 - |2x - 6| > 2$$

[2 marks]

$$4 - 12x - 61 > 2$$

For x > 3, |2x - 6| = 2x - 6.

In this (ase: 4 - (2x - 6) > 2

 $\Rightarrow 10-2x>2$

2x < 8

For x < 3, |2x - 6| = 6 - 2x.

In this case: 4-(6-2x)>2

2x 7 4

x > 2

Combining the results gives 2 4 x 4.

_	D 414	£ !	- £l-	414 0
5	Prove that,	for integer values	s of n such	that $0 \le n < 4$

$$2^{n+2} > 3^n$$

[2 marks]

Proof by exhaustion:

n	20+2	31	$2^{n+2} > 3^n$?
D	4	1	
l	8	3	
2	16	9	
3	32	27	

From the	table	_we_	have	bronew	that	for a	ılı.
integers n	such	that	05 N F	4, 2	20+2 7 3r)	

Turn over for the next question

6	Four students, Tom, Josh, Floella and Georgia are attempting to complete the
	indefinite integral

$$\int \frac{1}{x} \, \mathrm{d}x \qquad \text{for } x > 0$$

Each of the students' solutions is shown below:

Tom
$$\int \frac{1}{x} \, \mathrm{d}x = \ln x$$

$$\int \frac{1}{x} \, \mathrm{d}x = k \ln x$$

Floella
$$\int \frac{1}{x} \, \mathrm{d}x = \ln Ax$$

Georgia
$$\int \frac{1}{x} \, \mathrm{d}x = \ln x + c$$

6 (a) (i) Explain what is wrong with Tom's answer.

[1 mark]

6 (a) (ii) Explain what is wrong with Josh's answer.

[1 mark]

He	nas	DUt	+ne	constant	iΩ	the	wrona	place.
		1)	1

6 (b) Explain why Floella and Georgia's answers are equivalent.

[2 marks]

Do	not	writ
ou	tside	e the
	bo	X

7	Consecutive	terms of	a seguence	are re	elated	bν
	Conscount	terris or	a sequence	, are re	naicu	νy

$$u_{n+1} = 3 - (u_n)^2$$

- 7 (a) In the case that $u_1 = 2$
- **7** (a) (i) Find u_3

[2 marks]

$$U_2 = 3 - (u_1)^2 = 3 - (2)^2 = -1$$

$$U_3 = 3 - (U_2)^2 = 3 - (-1)^2 = 2$$

7 (a) (ii) Find u_{50}

[1 mark]

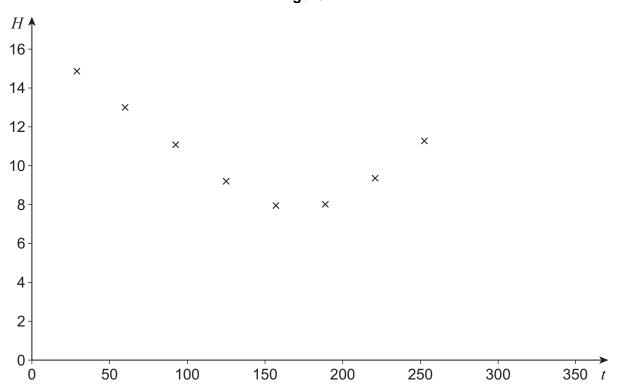
Uso = -1

7 (b) State a different value for u_1 which gives the same value for u_{50} as found in part (a)(ii).

[1 mark]

U. = - 2

Turn over for the next question



Mike, an amateur astronomer who lives in the South of England, wants to know how the number of hours of darkness changes through the year.

On various days between February and September he records the length of time, H hours, of darkness along with t, the number of days after 1 January.

His results are shown in Figure 1 below.

Figure 1

Mike models this data using the equation

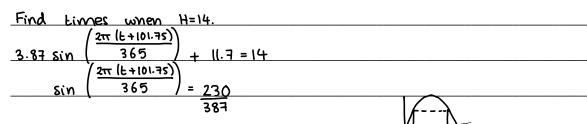
$$H = 3.87 \sin \left(\frac{2\pi (t + 101.75)}{365} \right) + 11.7$$

8 (a) Find the minimum number of hours of darkness predicted by Mike's model. Give your answer to the nearest minute.

[2 marks]

Minimum occurs when
$$\sin\left(\frac{2\pi (k+101.75)}{365}\right) = -1$$
.

-3.87 + 11.7 = 7.83


 $0.83 \times 60 = 49.8$ minutes ≈ 50 minutes

7 hours 50 minutes

8 (b) Find the maximum number of consecutive days where the number of hours of darkness predicted by Mike's model exceeds 14

[3 marks]

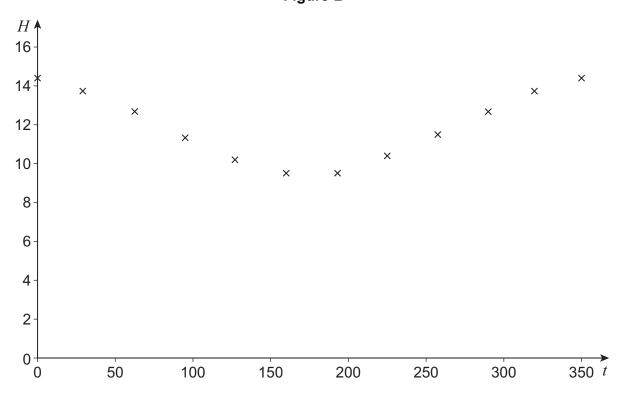
$$\frac{\left(\frac{2\pi(L+101.75)}{365}\right) = \sin^{-1}\left(\frac{230}{387}\right) = 0.6364}{\cos^{-1}\left(\frac{2\pi(L+101.75)}{365}\right) = \sin^{-1}\left(\frac{230}{387}\right) = \pi - 0.6364 = 2.505}$$

$$\frac{\left(\frac{2\pi(L+101.75)}{365}\right)=0.6364 \Rightarrow L=\frac{365}{2\pi}(0.6364)-101.75=-64.78}{2\pi}$$

$$\left(\frac{2\pi l + 101.75}{365}\right) = 2.505 \implies t = \frac{365}{2\pi} (2.505) - 101.75 = 43.78$$

Difference:	43-78-1-64.78)	= 108.	5	
11				1
		= 108	(on se cutive	aays

Question 8 continues on the next page



Turn over ▶

8 (c) Mike's friend Sofia, who lives in Spain, also records the number of hours of darkness on various days throughout the year.

Her results are shown in Figure 2 below.

Sofia attempts to model her data by refining Mike's model.

She decides to increase the 3.87 value, leaving everything else unchanged.

Explain whether Sofia's refinement is appropriate.

[2 marks]

Increasing the 3.87 value would increase the amplitude.

This refinement is not appropriate since we can see from her data that she has a lower amplitude than Mike.

11

Do not write outside the box Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Turn over ▶

9 Chloe is attempting to write $\frac{2x^2 + x}{(x+1)(x+2)^2}$ as partial fractions, with constant numerators.

Her incorrect attempt is shown below.

Step 1
$$\frac{2x^2 + x}{(x+1)(x+2)^2} = \frac{A}{x+1} + \frac{B}{(x+2)^2}$$

Step 2
$$2x^2 + x \equiv A(x+2)^2 + B(x+1)$$

Step 3 Let
$$x = -1 \Rightarrow A = 1$$

Let $x = -2 \Rightarrow B = -6$

Answer
$$\frac{2x^2 + x}{(x+1)(x+2)^2} = \frac{1}{x+1} - \frac{6}{(x+2)^2}$$

9 (a) (i) By using a counter example, show that the answer obtained by Chloe cannot be correct.

[2 marks]

$$\frac{2x^{2} + x}{(x+1)(x+2)^{2}} = \frac{1}{x+1} - \frac{6}{(x+2)^{2}}$$

For x=0, the LHS of the identity gives 0 but the RHS gives $1-\frac{6}{4}=-\frac{1}{2}$. These values are not equal so Chloe's answer is not correct.

9 (a) (ii) Explain her mistake in Step 1.

[1 mark]

Chloe should have included the term $\frac{}{x+z}$ on the right hand side.

[4 marks]

9 (b)	Write $\frac{2x^2 + x}{(x+1)(x+2)^2}$ as partial fractions, with constant numerator	S.
	272 + 7 - 4 . B . C	

$$\frac{2x^{2} + x}{(x+1)(x+2)^{2}} = \frac{A}{(x+1)} + \frac{B}{(x+2)^{2}} + \frac{C}{(x+2)}$$

$$A(x+2)^2 + B(x+1) + C(x+1)(x+2) = 2x^2 + x$$

Let
$$x=-1$$
: $A=1$

Let
$$x = -2$$
: $-8 = 6 \Rightarrow 8 = -6$

$$4-6+2C=0 \Rightarrow 2C=2 \Rightarrow C=1$$

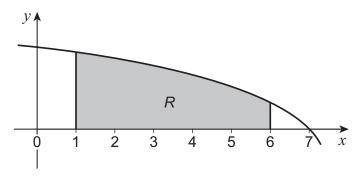
$$\frac{S_0}{(x+1)(x+2)^2} = \frac{1}{(x+1)} - \frac{6}{(x+2)^2} + \frac{1}{(x+2)}$$

Do not write
outside the
box

10 (a)	An arithmetic series is given by	
	$\sum_{r=5}^{20} (4r+1)$	
10 (a) (i)	Write down the first term of the series.	[1 mark]
	First term occurs at $(=5: (4(5)+1)=21$	
10 (a) (ii)	Write down the common difference of the series.	[1 mark]
	4	
10 (a) (iii)	Find the number of terms of the series.	[1 mark]
	16	

Do not	write
outside	the
has	

10 (b)	A different arithmetic series is given by		
	$\sum_{r=10}^{100} (br+c)$		
	where b and c are constants.		
	The sum of this series is 7735		
10 (b) (i)	Show that $55b + c = 85$ [4 marks]		
	Number of terms: $n = 91$		
	First term: a= 10b + c		
	Common difference: d=b		
	Sum of series: $\frac{n}{2}(2a + (n-1)d) = 7735$		
	$\frac{91}{2}(2(10b+c)+90b)=7735$		
	$\frac{91 \left(2(10b+c)+90b\right)=7735}{2}$ $$		
	55b + c = 85		


10 (b) (ii)	The 40th term of the series is 4 times the 2nd term.	
	Find the values of b and c .	[4 marks]
	2nd term: 11b + C	
	40th term: 49b+c	
	4(11b+c) = 49b+c	
	44b + 4c = 49b+c	
	5b = 3C ①	
	From previous question: 55b + C = 85 ©	
	From (): 55b=33c. Substitute into (2: 33C+c=85	
	⇒ 34C = 85	
	⇒ c = 2.5	
	From (1), $b = \frac{3}{5}(2.5) = 1.5$.	
	So, b=1.5	

The region R enclosed by the lines x = 1, x = 6, y = 0 and the curve

$$y = \ln (8 - x)$$

is shown shaded in Figure 3 below.

Figure 3

All distances are measured in centimetres.

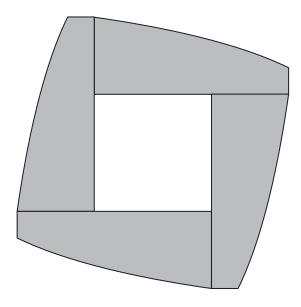
11 (a) Use a single trapezium to find an approximate value of the area of the shaded region, giving your answer in cm² to two decimal places.

[2 marks]

$$\frac{y = \ln(8 - x)}{}$$

$$y(1) = \ln(8-1) = \ln 7 = 1.945910149...$$

Area
$$\approx \frac{1}{2}(6-1)(1.945910149...+0.69314718...)$$


$$= 6.60 \, \text{cm}^2$$

Question 11 continues on the next page

11 (b) Shape B is made from four copies of region R as shown in Figure 4 below.

Figure 4

Shape B is cut from metal of thickness 2 mm

The metal has a density of 10.5 g/cm³

Use the trapezium rule with **six** ordinates to calculate an approximate value of the mass of Shape *B*.

Give your answer to the nearest gram.

[5 marks]

Area of one segment
$$\approx \frac{1}{2} \times 1 \times \left[\ln 2 + \ln 7 + 2 \left(\ln 3 + \ln 4 + \ln 5 + \ln 6 \right) \right]$$

= 7.20563...

2 mg = 0.2cm

 V_{olume} of $B = 28.82252 \times 0.2 = 5.764504 cm³$

Mass of
$$B = 5.764504 \times 10.5$$

11 (c)	Without further calculation, give one reason why the mass found in part (b) may be:
11 (c) (i)	an underestimate. [1 mark]
	The trapezia all lie below the curve.
11 (c) (ii)	an overestimate. [1 mark]
	Numbers in the calculation have been rounded.
	Turn over for the next question

Turn over ▶

Do not write outside the box

12 A curve *C* has equation

$$x^3 \sin y + \cos y = Ax$$

where A is a constant.

C passes through the point $P(\sqrt{3}, \frac{\pi}{6})$

12 (a) Show that A = 2

[2 marks]

$$(\sqrt{3})^{3} \sin\left(\frac{\pi}{6}\right) + \cos\left(\frac{\pi}{6}\right) = \sqrt{3}A$$

$$3\sqrt{3} \left(\frac{1}{2}\right) + \sqrt{3} = \sqrt{3}A$$

$$\frac{3}{2} + \frac{1}{2} = A$$

A = 2

12 (b) (i) Show that $\frac{dy}{dx} = \frac{2 - 3x^2 \sin y}{x^3 \cos y - \sin y}$

[5 marks]

$$\chi^3$$
 Siny + cosy = $2x$

$$\frac{dy}{dx}(x^3\cos y - \sin y) = 2 - 3x^2\sin y$$

$$\frac{dy}{dx} = \frac{2 - 3x^2 siny}{x^3 cosy} - siny$$

Do not write
outside the
box

12 (b) (ii)	Hence	find the	gradient	of the	curve at	P

[2 marks]

$$\frac{dy}{dx} = \frac{2 - 3x^2 siny}{x^3 cosy - siny}$$

At
$$(\sqrt{3}, \frac{\pi}{6})$$
, $\frac{dy}{dx} = \frac{2-3(\sqrt{3})^2 \sin(\frac{\pi}{6})}{(\sqrt{3})^3 \cos(\frac{\pi}{6}) - \sin(\frac{\pi}{6})}$

12 (b) (iii) The tangent to *C* at *P* intersects the *x*-axis at *Q*.

Find the exact *x*-coordinate of *Q*.

[4 marks]

At
$$(\sqrt{3}, \frac{\pi}{6})$$
 the gradient is $-\frac{5}{8}$.

$$\frac{y-\pi}{6} = -\frac{5}{8}(x-\sqrt{3})$$

$$y = -\frac{5}{8}x + \frac{5}{8}\sqrt{3} + \frac{11}{6}$$

On the
$$x$$
 axis $y=0$: $-\frac{5}{8}x + \frac{5}{3}\frac{13}{6} + \frac{\pi}{15} = 0$

$$\frac{5}{8}x = \frac{5}{8}\sqrt{3} + \frac{\pi}{6}$$

$$x = \sqrt{3} + \frac{4\pi}{15}$$

13 The function f is defined by

$$f(x) = \frac{2x+3}{x-2} \qquad x \in \mathbb{R}, x \neq 2$$

13 (a) (i) Find f^{-1}

[3 marks]

$$y = \frac{2x+3}{x-2}$$

$$yx - 2y = 2x + 3$$

$$yx - 2x = 2y + 3$$

$$x(y-2) = 2y + 3$$

$$f^{-1}(x) = \frac{2x+3}{x-2}$$
, $x \neq 2$

13 (a) (ii) Write down an expression for ff(x).

[1 mark]

$$f(f(x)) = \frac{2\left(\frac{2x+3}{x-2}\right)+3}{\left(\frac{2x+3}{x-2}\right)^{-2}}$$

$$= \frac{4x + 6 + 3(x - 2)}{2x + 3 - 2(x - 2)}$$

$$\frac{= 7x}{7} = x$$

13 (b) The function g is defined by

$$g(x) = \frac{2x^2 - 5x}{2}$$
 $x \in \mathbb{R}, \ 0 \le x \le 4$

13 (b) (i) Find the range of g.

[3 marks]

Maximum:
$$9(4) = 2(4)^2 - 5(4) = 6$$

Minimum:
$$\frac{2x^2 - 5x}{2} = \frac{x^2 - 5x}{2} = \frac{(x - 5)^2 - 25}{4}$$

Minimum point
$$\left(\frac{5}{4}, -\frac{25}{16}\right)$$

13 (b) (ii) Determine whether g has an inverse.

Fully justify your answer.

[2 marks]

g is many to one so does not have an inverse.

13 (c) Show that

$$f(x) = \frac{2x+3}{x-2}$$

$$gf(x) = \frac{48 + 29x - 2x^2}{2x^2 - 8x + 8}$$

 $g(x)=\frac{2x^2-5x}{2}$

[4 marks]

$$g(f(x)) = \frac{2\left(\frac{2x+3}{x-2}\right)^2 - 5\left(\frac{2x+3}{x-2}\right)}{2}$$

$$= \frac{2(2x+3)^2 - 5(2x+3)(x-2)}{2(x-2)^2}$$

$$= \frac{2(4x^2 + 12x + 9) - 5(2x^2 - x - 6)}{2(x^2 - 4x + 4)}$$

$$= \frac{9x^2 + 24x + 18 - 10x^2 + 5x + 30}{2x^2 - 9x + 8}$$

$$\frac{= 48 + 29x - 2x^2}{2x^2 - 8x + 8}$$

	Ш	Ш
اا	, IIIII	

13 (d) It can be shown that fg is given by

$$fg(x) = \frac{4x^2 - 10x + 6}{2x^2 - 5x - 4}$$

with domain $\{x \in \mathbb{R} : 0 \le x \le 4, x \ne a\}$

Find the value of a.

Fully justify your answer.

[2 marks]

$$2x^2 - 5x - 4 = 0$$

$$\chi = \frac{5 \pm \sqrt{25 - 4(-4)(2)}}{2}$$

$$x = 5 \pm \sqrt{57}$$

Therefore
$$a = 5 + \sqrt{57}$$

Turn over for the next question

14 The function f is defined by

$$f(x) = 3^x \sqrt{x} - 1 \qquad \text{where } x \ge 0$$

14 (a) f(x) = 0 has a single solution at the point $x = \alpha$

By considering a suitable change of sign, show that α lies between 0 and 1

[2 marks]

$$f(0) = 3^{\circ} \sqrt{50} - 1 = -1 < 0$$

 $f(1) = 3^{\circ} \sqrt{11} - 1 = 2 > 0$

The change of sign implies there is a root present.

Therefore root & is between 0 and 1.

14 (b) (i) Show that

$$f'(x) = \frac{3^x (1 + x \ln 9)}{2\sqrt{x}}$$

[3 marks]

$$f(x) = 3^x \sqrt{x} - 1$$

$$f(x) = 3^{x} x^{\frac{1}{2}} - 1$$

$$f'(x) = \frac{1}{2}x^{-\frac{1}{2}}3^{x} + 3^{x} \ln 3x^{\frac{1}{2}}$$

$$= 3^{\alpha} \left(\frac{1}{2} x^{-\frac{1}{2}} + \ln 3 x^{\frac{1}{2}} \right)$$

$$= 3^{x} \left(\frac{1}{2\sqrt{x}} + \ln 3\sqrt{x} \right)$$

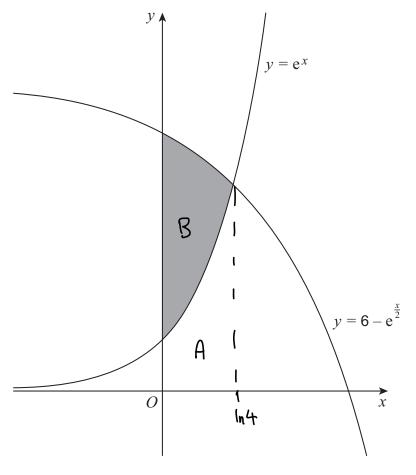
$$= 3^{x} \left(\frac{1 + 2x \ln 3}{2\sqrt{x}} \right)$$

$$= 3^{x} \left(\frac{1 + x \ln 3^{2}}{2 \sqrt{x}} \right)$$

$$= 3^{x} \left(\frac{1 + x \ln 9}{2 \sqrt{x}} \right)$$

50,___

$$f'(x) = \frac{3^{x}(1+x \ln 9)}{2\sqrt{x}}$$



or α.	Do not write outside the box
[2 marks]	
[2 marks]	
rgence_	

14 (b) (ii)	Use the Newton–Raphson method with $x_1 = 1$ to find x_3 , an approximation for α .
	Give your answer to five decimal places. [2 marks]
	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$
	$\frac{\chi_{n+1} = \chi_n - (3^{x_n} \sqrt{\chi_n} - 1)}{\left(\frac{3^{x_n} (1 + \chi_n \ln q)}{2\sqrt{\chi_n}}\right)} = \chi_n - \frac{2\sqrt{\chi_n} (3^{x_n} \sqrt{\chi_n} - 1)}{3^{x_n} (1 + \chi_n \ln q)}$
	X, =
	By substituting x_1 into above: $x_2 = 0.5829716$
	By substituting 1/2 into above: 23 = 0.4246536
	X3 ≈ 0.42465 (5.d)
14 (b) (iii)	Explain why the Newton–Raphson method fails to find α with $x_1=0$ [2 marks]
	For $x_1=0$, are values of x_n would equal zero so convergence
	would be impossible.

The region enclosed between the curves $y = e^x$, $y = 6 - e^{\frac{x}{2}}$ and the line x = 0 is shown shaded in the diagram below.

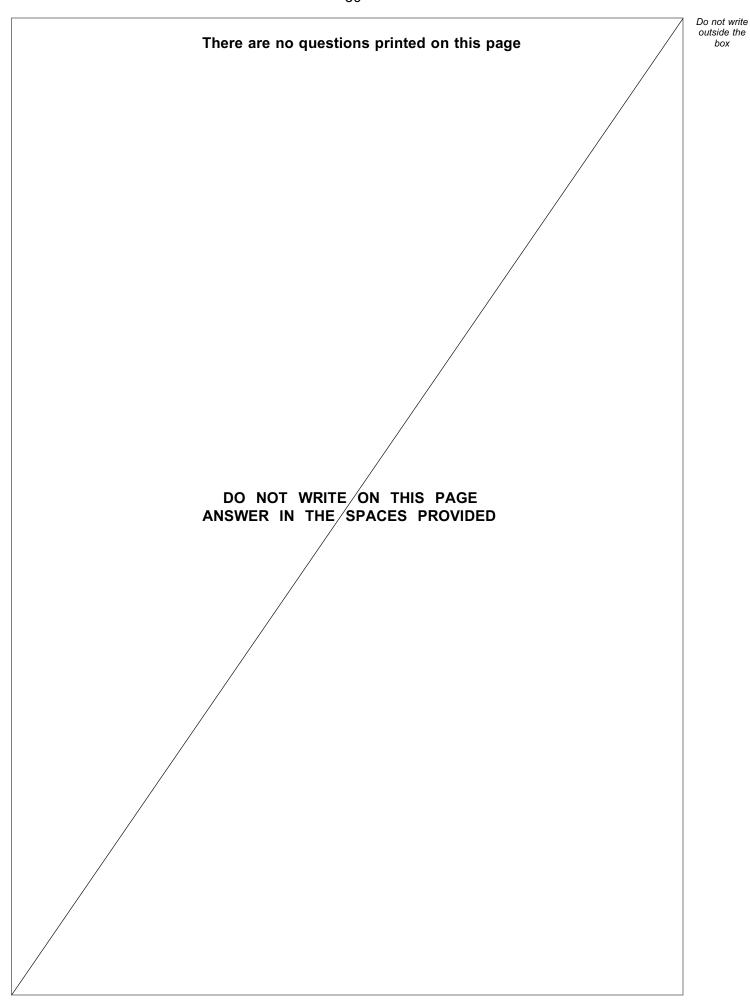
Show that the exact area of the shaded region is

$$6 \ln 4 - 5$$

Fully justify your answer.

[10 marks]

Find point of intersection: ex = 6-e2
$e^{x} + e^{\frac{x}{2}} - 6 = 0$
$(e^{\frac{x}{2}}-i)(e^{\frac{x}{2}}+3)=0$
$e^{\frac{x}{2}} = 2$ or $e^{\frac{x}{2}} = -3$
_
Since $e^{\frac{\pi}{2}} > 0$, no solutions to $e^{\frac{\pi}{2}} = -3$.
So $e^{\frac{3}{2}} = 2 \Rightarrow \frac{x}{3} = \ln 2$
2
$\Rightarrow x = 2 \ln 2$
$\Rightarrow x = \ln 4$



$y = 6 - e^{\frac{x}{2}}$ between 0 and $\ln 4$ and then subtract to area A (see diagram) by calculating the integral of $y = 1$ between 0 and $\ln 4$: $ \ln 4 + \ln $	TO C	<u>slowale</u>	ovea P	992)	diagram)	, we	integra
between 0 and $\ln 4$: $ \frac{\ln^4}{\text{Area}} = \int_0^{\ln 4} (6 - e^{\frac{x}{2}}) dx - \int_0^{e^x} e^x dx = \left[6x - 2e^{\frac{x}{2}} \right]_0^{\ln 4} - \left[e^x \right]_0^{\ln 4} $ $ = \left[\left(6 \ln 4 - 2e^{\frac{1}{2} \ln 4} \right) - \left(-2 \right) \right] - \left[\left(e^{\ln 4} \right) \right] $ $ = 6 \ln 4 - 2(2) + 2 - 4 + 1 $	y = 6 -	e ³ / ₂ bef	ween 0 (and In 4	and the	n sub	tract the
between 0 and $\ln 4$: $ \frac{\ln^4}{\text{Area}} = \int_0^{\ln 4} (6 - e^{\frac{x}{2}}) dx - \int_0^{e^x} e^x dx = \left[6x - 2e^{\frac{x}{2}} \right]_0^{\ln 4} - \left[e^x \right]_0^{\ln 4} $ $ = \left[\left(6 \ln 4 - 2e^{\frac{1}{2} \ln 4} \right) - \left(-2 \right) \right] - \left[\left(e^{\ln 4} \right) \right] $ $ = 6 \ln 4 - 2(2) + 2 - 4 + 1 $	-						
$\frac{\ln^{4} + \ln^{4}}{\text{Area}} = \int_{0}^{1} (6 - e^{\frac{x}{2}}) dx - \int_{0}^{1} e^{x} dx = \left[6x - 2e^{\frac{x}{2}} \right]_{0}^{\ln 4} - \left[e^{x} \right]_{0}^{\ln 4}$ $= \left[\left(6 \ln 4 - 2e^{\frac{1}{2} \ln 4} \right) - \left(-2 \right) \right] - \left[\left(e^{\ln 4} \right) \right]$ $= 6 \ln 4 - 2(2) + 2 - 4 + 1$			•)	J	U	1 5
Area = $\int (6 - e^{\frac{x}{2}}) dx - \int e^{x} dx = \left[6x - 2e^{\frac{x}{2}}\right]_{0}^{\ln 4} - \left[e^{x}\right]_{0}^{\ln 4}$ = $\left[\left(6\ln 4 - 2e^{\frac{1}{2}\ln 4}\right) - \left(-2\right)\right] - \left[\left(e^{\ln 4}\right)\right]$ = $6\ln 4 - 2e^{\ln 2} + 2 - e^{\ln 4} + 1$ = $6\ln 4 - 2(2) + 2 - 4 + 1$							
$= \left[\left(6 \ln 4 - 2 e^{\frac{1}{2} \ln 4} \right) - \left(-2 \right) \right] - \left[\left(e^{\ln 4} \right) \right]$ $= 6 \ln 4 - 2 e^{\ln 2} + 2 - e^{\ln 4} + 1$ $= 6 \ln 4 - 2 (2) + 2 - 4 + 1$		\(\(\alpha\) = \(\frac{\times}{2}\)	<u>In4</u>	г	x 7 \n4	Γ ₀ γ7	\ n4
$= 6 \ln 4 - 2 e^{\ln 2} + 2 - e^{\ln 4} + 1$ $= 6 \ln 4 - 2(2) + 2 - 4 + 1$	Area =) (6- E ²	·) dx -) e	<u>dx</u> = [6x - 2e ²] _ο	- [6 _~]	· · · · · · · · · · · · · · · · · · ·
$= 6 \ln 4 - 2(2) + 2 - 4 + 1$				=[(6	ln4 - 2e ^{1/104})-	(-2)] -	[(e"4)-
				= 6 lr	14 - 2e m2 + 2	- e 124	+)
				= 61n	4 - 2(2) + 2	-4+1	
				<u></u>			

END OF QUESTIONS

30

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.					
	Copyright information For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is					
	published after each live examination series and is available for free download from www.aqa.org.uk. Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have					
	been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.					
	Copyright © 2020 AQA and its licensors. All rights reserved.					

