

Please write clearly in block capitals.	
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

AS **MATHEMATICS**

Paper 1

Wednesday 16 May 2018

Morning

Time allowed: 1 hour 30 minutes

Materials

- You must have the AQA Formulae for A-level Mathematics booklet.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question.
 If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

For Examiner's Use					
Question	Mark				
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
TOTAL					

Section A

Answer all questions in the spaces provided.

1 Three of the following points lie on the same straight line.

Which point does not lie on this line?

Tick one box.

[1 mark]

$$(-2, 14)$$

$$(-1, 8)$$

$$(1, -1)$$

$$(2, -6)$$

2 A circle has equation $(x-2)^2 + (y+3)^2 = 13$

Find the gradient of the tangent to this circle at the origin.

Circle your answer.

[1 mark]

$$-\frac{3}{2}$$

$$-\frac{2}{3}$$

$$\frac{3}{2}$$

Origin (2,-3)

$$2x + 2y \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{x}{y}$$

At
$$(2,-3)$$
, $\frac{dy}{dx} = -\frac{(2)}{-3} = \frac{2}{3}$.

3 State the interval for which $\sin x$ is a decreasing function for $0^{\circ} \le x \le 360^{\circ}$

[2 marks]

Turn over for the next question

4 (a)	Find the first three terms in the expansion of $(1-3x)^4$ in ascending powers	of <i>x</i> . [3 marks]
	$(1-3x)^4 = {4 \choose 0}(-3x)^0 + {4 \choose 1}(-3x)^1 + {4 \choose 2}(-3x)^2 + \cdots$	
	$= 1 + 4x(-3x) + 6(9x^2) + \dots$	
	= 1 - 12x + 54x ² +···	
4 (b)	Using your expansion, approximate (0.994) ⁴ to six decimal places.	[2 marks]
	$(1-3x)^4 = 0.994^4$	
	[- 3χ = 0.994	
	3x = 0.006	
	x = 0.002	
	Substitute x = 0.002 into our answer from part (a):	
	$= 1 - 12 (0.002) + 54 (0.002)^2 = 0.976216$	

5 Point C has coordinates (c, 2) and point D has coordinates (6, d).

The line y + 4x = 11 is the perpendicular bisector of *CD*.

Find c and d.

[5 marks]

The gradient of CD is the negative recipical of the gradient

Of its bisector. So the gradient of CD is 1/4.

 $\frac{\text{Gradient} = \frac{\text{Change in } y}{\text{change in } x} = \frac{d-2}{6-c}$

 $\frac{50 \quad d-2 = 1}{6-c} \implies 4d-8 = 6-c \implies 4d+c = 14 \quad 0$

The midpoint of CD is $\left(\frac{6+c}{2}, \frac{d+2}{2}\right)$.

These coordinates will society the equation for the bisector, so

 $\frac{d+2}{2} + 4\left(\frac{6+c}{2}\right) = 11$

d+2 + 24 + 4C = 22

40+ 1+4=0 2

From (1), c=14-4d. Substitute into (2):

4(14-4d) + d + 4 = 0

56 - 16d + d + 4 = 0

60 = 15d

d = 4

C = 14 - 4d = 14 - 4(4) = -2

So, c = -2, d = 4.

6 ABC is a right-angled triangle.

D is the point on hypotenuse AC such that AD = AB.

The area of $\triangle ABD$ is equal to half that of $\triangle ABC$.

6 (a) Show that $\tan A = 2 \sin A$

Considering areas: $\frac{1}{2} \triangle ABC = \triangle ABD$ $\frac{1}{2} (\triangle ABD + \triangle BDC) = \triangle ABD$ $\frac{1}{2} \triangle BDC = \frac{1}{2} \triangle ABD$ [4 marks] $\frac{1}{2} \triangle ABD = \triangle ABD$

So, the area of $\triangle ADB = Area of \triangle BDC$

So, we must have CD = AD = x, so AC = 2x.

 $\frac{\cos A = AB}{AC} = \frac{x}{2x} = \frac{1}{2}, \quad So \quad A = 60.$

tan A = tan 60 = J3

 $\sin A = \sin 60 = \frac{\sqrt{3}}{2}$

Therefore, 2sinA = LanA = J3.

6 (b) (i)	Show that the equation given in part (a) has two solutions for $0^{\circ} \le A \le 90^{\circ}$	
		[2 marks]
	2sinA = tanA ⇒ 2sinA = sinA cosA	
	$\frac{2 \sin A \cos A - \sin A = 0}{\sin A \left(2 (\cos A - 1) = 0\right)} \Rightarrow \frac{\cos A}{2 \cos A} = 0$	
	SINA = O or cosA = 1/2.	
	If sinA=0, A=0.	
	$f = (0.5A = \frac{1}{2}, A = 60.^{\circ})$	
	so two solutions: 0°, 60°.	
6 (b) (ii)	State the solution which is appropriate in this context.	[1 mark]
	<u>60°</u>	

Turn over for the next question

If n is prime number greater than $5 \Rightarrow n^4$ has final digit 1

[5 marks]

If n is prime then it cannot be even so councit end in 2,4,6,8,0.

It also cannot end in 5 as then it would be divisible by 5.

So a prime number must end in 1,3,7 or 9.

If n ends in 1, $1^4 = 1$ so n^4 ends in 1.

If n ends in 7, $3^4 = 2401$ so n^4 ends in 1.

If n ends in 9, $9^4 = 6561$ so n^4 ends in 1.

So for all possible endings, n^4 ends in 1.

Hence, proven by exhaustion.

9

Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Turn over ▶

8 Maxine measures the pressure, P kilopascals, and the volume, V litres, in a fixed quantity of gas.

Maxine believes that the pressure and volume are connected by the equation

$$P = cV^d$$

where c and d are constants.

Using four experimental results, Maxine plots $\log_{10}P$ against $\log_{10}V$, as shown in the graph below.

8 (a) Find the value of P and the value of V for the data point labelled A on the graph. [2 marks]

$$\frac{\log_{10} V = -0.15}{V = 10^{-0.15}} \frac{\log_{10} P = 2.18}{P = 10^{2.18}}$$

$$V = 0.708 \qquad P = 151.4$$

Calculate the	value of each of the constants c and d .
we can tu	rn P=cV ^d into a linear equation by taking
	log10 P = log10 (c V d)
	logio P = logio C + d logioV
So here s	shows that d is the gradient and logic C is the in
From the	graph, the gradient is -1.4 and the intercept is 1.0
So, d=-1.	·4 , logio C = 1.97
	$c = 10^{1.97}$
	c=93.3
Estimate the p	pressure of the gas when the volume is 2 litres.
When V=	2, P = 93.3 x 2 ^{-1.4}
	= 35.4 kilopassals

9 Craig is investigating the gradient of chords of the curve with equation $f(x) = x - x^2$

Each chord joins the point (3, -6) to the point (3 + h, f(3 + h))

The table shows some of Craig's results.

x	f(x)	h	x + h	f(x + h)	Gradient
3	-6	1	4	-12	-6
3	-6	0.1	3.1	-6.51	-5.1
3	-6	0.01	3.01	- 6.0501	- 5.01
3	-6	0.001			
3	-6	0.0001			

9 (a) Show how the value -5.1 has been calculated.

[1 mark]

$$\frac{f(x+h)-f(x)}{h} = -(.51-(-6)) = -5.1$$

9 (b) Complete the third row of the table above.

[2 marks]

$$2(1) = 3 + 0.01 = 3.01$$

$$f(x+h) = 3.01 - (3.01)^2 = -6.0501$$

Uradient =
$$\frac{f(x+h) - f(x)}{h} = \frac{-6.0501 - (-6)}{0.01} = -5.01$$

Do not	write
outside	the
ho	′

tends	the limit suggested by Craig's investigation for the gradient of these cho to 0
<u>-5</u>	
Using	differentiation from first principles, verify that your result in part (c) is co
Crad	ient of chard = $f(3+h)-f(3)$
Chock	h
	$= \frac{(3+h) - (3+h)^2 - (3-3^2)}{h}$
	h
	= 3+h-9-6h-h2+6
	$= - h^2 - 5h$
	h
	=-h-5
Δ,	$h \rightarrow 0$, $-h-5 \rightarrow -5$.
So,	at $x=3$, the gradient is -5 .

10 A curve has equation $y = 2x^2 - 8x\sqrt{x} + 8x + 1$ for $x \ge 0$

10 (a) Prove that the curve has a maximum point at (1, 3)

Fully justify your answer.

[9 marks]

$$y=2x^2-8x^{\frac{3}{2}}+8x+1$$

$$\frac{dy}{dx} = 4x - 12x^{\frac{1}{2}} + 8$$

$$\frac{dy}{dx} = 4x - 12x^{\frac{1}{2}} + 8 = 0$$

$$4(x-3x^{\frac{1}{2}}+2)=0$$

$$4(\chi^{\frac{1}{2}}-2)(\chi^{\frac{1}{2}}-1)=0$$

$$50 \quad \chi^{\frac{1}{2}} - 2 = 0 \quad \text{or} \quad \chi^{\frac{1}{2}} - 1 = 0$$

$$x = 4$$
 $x = 1$

When
$$x=1$$
, $y=2(1)-8(1)+8(1)+1$

is a maximum.

For a maximum, $\frac{d^2y}{dx^2} < 0$.

$$\frac{d^2y}{dx^2} = 4 - 6x^{-\frac{1}{2}} = 4 - 6$$

At
$$x = 1$$
, $\frac{d^2y}{dx^2} = 4 - \frac{6}{1} = -2$

o)	Find the coordinates of the other stationary point of the curve and state its nature [2 m
	We found in (a) that the other stationary point was at $x=4$.
	When $x = 4$, $y = 2(16) - 8(4)(2) + 8(4) + 1$
	= 32 - 64 + 32 + 1 = 1
	So it is at (4,1).
	At $x=4$, $\frac{d^2y}{dx^2} = 4 - \frac{6}{34} = 4 - 3 = 1 > 0$
	So (4,1) is a minimum.

Turn over for Section B

Section B

Answer all questions in the spaces provided.

11 In this question use $g = 9.8 \,\mathrm{m \, s^{-2}}$

A ball, initially at rest, is dropped from a height of 40 m above the ground.

Calculate the speed of the ball when it reaches the ground.

Circle your answer.

V2 = W2 + 2QS V2 = O2 + 2(9.8)(40)

v² = 784 v = 28

12 An object of mass 5 kg is moving in a straight line.

 $-28\,{\rm m}\,{\rm s}^{-1}$

As a result of experiencing a forward force of F newtons and a resistant force of R newtons it accelerates at $0.6\,\mathrm{m\,s^{-2}}$

Which one of the following equations is correct?

Circle your answer.

[1 mark]

[1 mark]

$$F - R = 0$$
 $F - R = 5$ $F - R = 0.6$

$$0.6$$
 $R \leftarrow \bigcirc \rightarrow F$

Using $F=ma: F-R=5(0.6)$
 $F-R=3$

A vehicle, which begins at rest at point *P*, is travelling in a straight line.

For the first 4 seconds the vehicle moves with a constant acceleration of $0.75\,\mathrm{m\,s^{-2}}$

For the next 5 seconds the vehicle moves with a constant acceleration of $-1.2\,\mathrm{m\,s^{-2}}$

The vehicle then immediately stops accelerating, and travels a further 33 m at constant speed.

13 (a) Draw a velocity–time graph for this journey on the grid below.

[3 marks]

13 (b) Find the distance of the car from *P* after 20 seconds.

[3 marks]

The distance travelled is the area underneath the graph.

When the graph is below the x axis, this counts as negative distance as the vehicle is travelling backwards.

Distance =
$$\frac{4 \times 3}{2} + \frac{(6.5 - 4) \times 3}{2} - \frac{(9 - 6.5) \times 3}{2} - (11 \times 3)$$

$$=6+\frac{7.5}{2}-\frac{7.5}{2}-33=-27$$

SO it travels - 27m backwards.

Distance is 27m.

14 In this question use $g = 9.81 \,\mathrm{m \, s^{-2}}$

Two particles, of mass 1.8 kg and 1.2 kg, are connected by a light, inextensible string over a smooth peg.

14 (a) Initially the particles are held at rest 1.5 m above horizontal ground and the string between them is taut.

The particles are released from rest.

Find the time taken for the 1.8 kg particle to reach the ground.

[5 marks]

T T T 1 Using
$$F=ma$$
:

(A) (B) A: 1.8g - T = 1.8a (D)

1.8g 1.2g B: T - 1.2g = 1.2a (2)

$$S = 1.5$$
 $U = 0$
 $S = Ut + \frac{1}{2}at^2$
 $V = 1.5 = 0 + \frac{1}{2}(1.96)t^2$
 $t^2 = 1.5306$
 $t = t$
 $t = 1.24$ seconds

	19	
		Do not outside bo.
14 (b)	State one assumption you have made in answering part (a).	
	The lighter mass does not reach the peg before the heavier mass reaches the ground.	
	Turn over for the next question	

1 9

Turn over ▶

A cyclist, Laura, is travelling in a straight line on a horizontal road at a constant speed of 25 km h⁻¹

A second cyclist, Jason, is riding closely and directly behind Laura. He is also moving with a constant speed of $25\,\mathrm{km}\;h^{-1}$

15 (a) The driving force applied by Jason is likely to be less than the driving force applied by Laura.

Explain why.

[1 mark]

Laura is sheltering Jason so he experiences less air resistance than Laura.

15 (b) Jason has a problem and stops, but Laura continues at the same constant speed.

Laura sees an accident 40 m ahead, so she stops pedalling and applies the brakes.

She experiences a total resistance force of 40 N

Laura and her cycle have a combined mass of 64 kg

15 (b) (i) Determine whether Laura stops before reaching the accident.

Fully justify your answer.

[4 marks]

$$\alpha = -0.625$$

$$\frac{25 \text{ km/h} = 25 \times 1000}{60 \times 60} = 6.944 \text{ m/s}$$

$$S=S \qquad \qquad V^2 = U^2 + 2as$$

$$U = 6.944$$
 0 = $6.944^2 + 2(-0.625)(s)$

$$V = 0$$
 0 = $48.225 - 1.25s$

$$\alpha = -0.625$$
 $S = 48.225 = 38.6m$

F = -

reaching the accident.

(~ <i>)</i> (11)	State one assumption you have made that could affect your answer to part (b)(i). [1 mark]							
			force	would	decrease	2.0	she	Slows
	down.							
			Turn ove	r for the ne	ext question			
					•			

A remote-controlled toy car is moving over a horizontal surface. It moves in a straight line through a point *A*.

The toy is initially at the point with displacement 3 metres from A. Its velocity, $v \, \text{m} \, \text{s}^{-1}$, at time t seconds is defined by

$$v = 0.06(2 + t - t^2)$$

16 (a) Find an expression for the displacement, *r* metres, of the toy from *A* at time *t* seconds.

[4 marks]

$$r = \int v \, dt = \int 0.06(2+t-t^2) \, dt$$

$$r = 0.06(2t+\frac{t^2}{2}-\frac{t^3}{3}) + c$$

At 6=0, r=3 so c=3.

$$f = 0.06(2t + \frac{t^2}{2} - \frac{t^3}{3}) + 3$$

16 (b) In this question use $g = 9.8 \,\mathrm{m\,s^{-2}}$

At time t=2 seconds, the toy launches a ball which travels directly upwards with initial speed $3.43\,\mathrm{m\,s^{-1}}$

Find the time taken for the ball to reach its highest point.

[3 marks]

S = -

U = 3.43

v = 0

0 = -9.8

t = t

V = 4 + at

0 = 3.43 - 9.8t

t = 3.43

t = 0.35 seconds

END OF QUESTIONS

24

