

SPECIMEN MATERIAL

Please write clearly, i	block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

AS MODEL SOLUTIONS

FURTHER MATHEMATICS

Paper 1

Exam Date Morning Time allowed:

Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- The AQA booklet of formulae and statistical tables.
- You may use a graphics calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should be used for drawing.
- Answer all questions.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

Unless stated otherwise, you may quote formulae, without proof, from the booklet. You do not necessarily need to use all the space provided.

Answer all questions in the spaces provided.

1 A reflection is represented by the matrix $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

State the equation of the line of invariant points.

Circle your answer.

[1 mark]

$$x = 0$$

$$y = x$$

$$y = -x$$

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ -y \end{pmatrix}$$
So for $\begin{pmatrix} x \\ y \end{pmatrix}$ to be invariant, $y = -y$ and therefore $y = 0$

2 Find the mean value of $3x^2$ over the interval $1 \le x \le 3$

Circle your answer.

[1 mark]

$$8\frac{2}{3} \qquad 10 \qquad (13) \qquad 26$$
Mean = $\frac{1}{b-a} \int_{a}^{b} f(x) dx = \frac{1}{3-1} \int_{1}^{3} 3x^{2} dx = \frac{1}{2} \left[x^{3} \right]_{1}^{3} = \frac{1}{2} (27-1) = 13$

3 Find the equations of the asymptotes of the curve $x^2 - 3y^2 = 1$

Circle your answer.

[1 mark]

$$y = \pm 3x$$
 $y = \pm \frac{1}{3}x$ $y = \pm \sqrt{3}x$ $y = \pm \frac{1}{\sqrt{3}}x$

 $2(^{2}-3y^{2}=1)$ So the curve scan never satisfy $2(^{2}-3y^{2}=0)$ $=2(^{2}-3y^{2})$ $=2(^{2}-3y^{$

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 1 & k \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

4 (a) Find the value of k for which matrix **A** is singular.

[1 mark]

4 (b) Describe the transformation represented by matrix **B**.

[1 mark]

4 (c) (i) Given that **A** and **B** are both non-singular, verify that $A^{-1}B^{-1} = (BA)^{-1}$.

$$BA = \begin{pmatrix} -1 & -2 \\ 1 & k \end{pmatrix} = 7 \left(BA\right)^{-1} = \frac{1}{-k+2} \begin{pmatrix} k & 2 \\ -1 & -1 \end{pmatrix}$$
 [4 marks]

$$A^{-1} = \frac{1}{R-2} \begin{pmatrix} R & -2 \\ -1 & 1 \end{pmatrix}$$
 and $B^{-1} = \frac{1}{-1} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

$$\int_{0}^{-1} A^{-1} B^{-1} = \frac{1}{(R-2)(-1)} \begin{pmatrix} R & -2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \frac{1}{-R+2} \begin{pmatrix} R+0 & O+(-2)(-1) \\ -|x|+O & O+(-1)(1) \end{pmatrix}$$

$$=\frac{1}{-k+2}\begin{pmatrix} k & 2 \\ -1 & -1 \end{pmatrix}$$

4 (c) (ii)	Prove the result M ⁻¹	N ⁻¹	$= (NM)^{-1}$	for all	non-singular	square	matrices	M and	N of the
	same size.								

[4 marks]

Consider $(NM) \times (M^{-1}N^{-1})$ Let $X = (NM) \times (M^{-1}N^{-1})$ $= N \times M \times M^{-1} \times N^{-1}$

 $= N \times N^{-1}$

= I

 $S_0 \times = (NM) \times (M^{-1}N^{-1}) = I => M^{-1}N^{-1} = (NM)^{-1}$

Therefore, the result M'N'= (NM)' for all square matricies N and M that are the same size

The region bounded by the curve with equation $y = 3 + \sqrt{x}$, the *x*-axis and the lines x = 1 and x = 4 is rotated through 2π radians about the *x*-axis.

Use integration to show that the volume generated is $\frac{125\pi}{2}$

[5 marks]

$$y = 3 + \sqrt{x} = y^2 = 9 + 6\sqrt{x} + x$$

Solid of revolution around x-axis: $V = \int_a^b T y^2 dx$

$$\sqrt{=\pi} \int_{1}^{4} (9+6\sqrt{x}+x) dx = \pi \int_{1}^{4} (9+6x^{\frac{1}{2}}+x) dx = \pi \left[9x+4x^{\frac{3}{2}}+\frac{1}{2}x^{2}\right]^{\frac{1}{4}}$$

$$V = \pi \left[\left(9(4) + 4(4)^{3/4} + \frac{1}{2}(4)^{3/2} \right) - \left(9(1) + 4(1)^{3/2} + \frac{1}{2}(1)^{2/2} \right) \right]$$

$$= \pi \left[\frac{1}{2} \left(152 - 27 \right) \right] = \frac{\pi}{2} \left(126 \right)$$

The volume of the region is 125Th

Use the definitions of $\sinh x$ and $\cosh x$ in terms of e^x and e^{-x} to show that 6 (a) $x = \frac{1}{2} \ln \left(\frac{1+t}{1-t} \right)$ where $t = \tanh x$

[4 marks]

Sinh $x = \frac{1}{2}(e^{x} - e^{-x})$ and $ash x = \frac{1}{2}(e^{x} + e^{-x})$

 $A = \frac{\sinh x}{\cosh x} = \frac{c^x - e^{-x}}{c^x + e^{-x}} = \frac{c^{2x} - 1}{e^{2x} + 1} \implies f = \frac{e^{2x} - 1}{e^{2x} + 1}$

To find the inverse function, we need to rearrange for x

 $k(e^{2x}+1)=e^{2x}-1=7 e^{2x}-e^{x}=-1-t$

 $= e^{2x}(t-1) = -1(1+t)$ $= e^{2x} = \frac{1+t}{1-t}$

 $=> 2x = In \left(\frac{1+t}{1-t}\right)$

 $=> x = \frac{1}{2} \ln \left(\frac{1+1}{1-t} \right)$

Question 6 continues on the next page

6 (b) (i) Prove $\cosh^3 x = \frac{1}{4} \cosh 3x + \frac{3}{4} \cosh x$

[4 marks]

$$\begin{aligned}
\cos^{3}x &= \left[\frac{1}{2}(e^{x}+e^{-x})\right]^{3} = \frac{1}{8}\left(e^{3x}+3e^{2x}e^{-x}+3e^{x}e^{-\lambda x}+c^{-3x}\right) \\
&= \frac{1}{8}(e^{3x}+e^{-3x}+3(e^{x}+e^{-x})) \\
&= \frac{1}{4}\left(\frac{1}{2}(e^{x}+e^{-x})\right)+\frac{3}{4}\left(\frac{1}{2}(e^{x}+e^{-x})\right)
\end{aligned}$$

$$= \frac{1}{4} \cosh 3x + \frac{3}{4} \cosh x = RHS$$

So
$$\cosh^3 x = \frac{1}{4} \cosh 3x + \frac{3}{4} \cosh x$$

6	(b) (ii)	Show that the	equation	$\cosh 3 x = 13 \cosh x$	has only	one positive	solution
v	(~) (!!)	OHOW that the	cquation	$\lambda = 1000011$	Has offing	One positive	Solution.

Find this solution in exact logarithmic form.

[4 marks]

$$COSh3 x = \frac{1}{4} (Bash x) + \frac{3}{4} cosh x$$

$$= \frac{13+3}{4} (cosh x) = 4cosh x$$

$$\cosh^3 x - 4\cosh x = 0$$

$$\cosh x \left(\cosh^2 x - 4\right) = 0$$

$$\cosh x (\cosh x - 2)(\cosh x + 2) = 0$$

Range of each
$$x : cosh x = 1 \ \forall x$$
 so cosh $x \neq 0$ and cosh $x \neq -2$

So
$$\cosh x = 2 = 7 x = \ln (2 + \sqrt{2^2 - 1}) = \ln (2 + \sqrt{3})$$

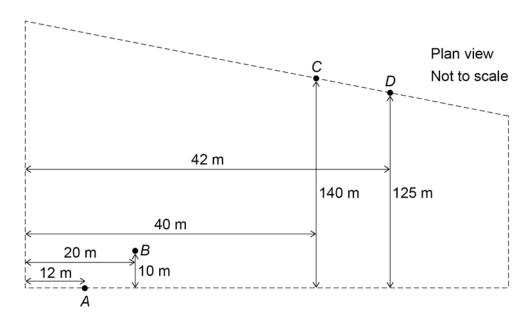
 $x = \ln (2 + \sqrt{3})$ (Only one possible solution)

A lighting engineer is setting up part of a display inside a large building. The diagram shows a plan view of the area in which he is working.

He has two lights, which project narrow beams of light.

One is set up at a point 3 metres above the point *A* and the beam from this light hits the wall 23 metres above the point *D*.

The other is set up 1 metre above the point *B* and the beam from this light hits the wall 29 metres above the point *C*.



7 (a) By creating a suitable model, show that the beams of light intersect.

[6 marks] $\begin{array}{c}
\begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} \begin{pmatrix} 30 \\ 125 \\ 23 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix} \end{pmatrix} \quad \begin{array}{c}
\text{This is the light starting } 3m \text{ above } A \text{ (which we take } \\
& \text{to be the origin) and ending up } 23m \text{ above } D)
\end{array}$ $\begin{array}{c}
\begin{pmatrix} 8 \\ 10 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} \begin{pmatrix} 223 \\ 140 \\ 241 \end{pmatrix} - \begin{pmatrix} 8 \\ 10 \\ 1 \end{pmatrix} \end{pmatrix} \quad \begin{array}{c}
\text{Vector equation of a line representing the light starting at } \\
& \text{Im above } B \text{ and ending } 29m \text{ above } C
\end{array}$ $\begin{array}{c}
T_{R} = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 305 \\ 125 \\ 20 \end{pmatrix} \text{ and } \begin{pmatrix} 8 \\ 8 \\ 11 \end{pmatrix} + \mu \begin{pmatrix} 120 \\ 228 \\ 228 \end{pmatrix}$ $= 7 30\lambda = 8 + 20\mu \text{ and } |25\lambda = |0 + |30\mu$

	Solving these two equations simultaneously yields: $\lambda = \frac{3}{5}$ and $\mu = \frac{1}{2}$ Substituting these values into the third component: $3 + \frac{3}{5}(20) = 15$ and $1 + \frac{1}{2}(28) = 15$ so the lines intersect	
o)	Find the angle between the two beams of light.	[3 ma
	$\frac{(30) + (20) + (20)}{(120) + (20)} = \frac{2 \cdot b}{(20) + (20)}$	
	$(05.0 = \sqrt{33^2 + 125^2 + 26^2} \sqrt{26^2 + 136^2 + 26^2} = 0.9951$	
	=> 0= 5.6°	
	Ctate and way in which the model you exceed in most (a) could be refined	
:)	State one way in which the model you created in part (a) could be refined. Take the width of the beams into account	[1 m

8 A curve has polar equation $r = 3 + 2\cos\theta$, where $0 \le \theta < 2\pi$

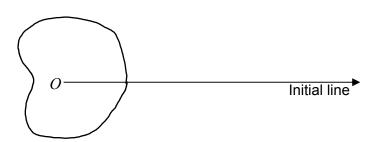
R	(a) (i)	State the	maximum	and	minimum	values	of r
0	(a) (i)	State the	IIIaxiiiiuiii	anu	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	values	01/

[2 marks]

Maximum of $\cos\theta=1$ so $r=3+2(1)=5$	(=S
Minimum of cos $\beta = -1$ so $r = 3+\lambda(-1) = 1$	r=1

8 (a) (ii) Sketch the curve.

[2 marks]



8 (b)	The curve $r = 3 + 2 \cos \theta$ intersect	s the curve with polar equation	$r = 8\cos^2\theta$,
	where $0 \le \theta < 2\pi$		

Find all of the points of intersection of the two curves in the form $[r, \theta]$.

[6 marks]

Equating the two equations: 3+2c=8c2

802-20-3=0

8c2-bc+4c-3=0

2c(4c-3)+(4c-3)=0

(2c+1)(4c-3)=0

 $\cos \theta = -\frac{1}{2}$, $\cos \theta = \frac{3}{4}$

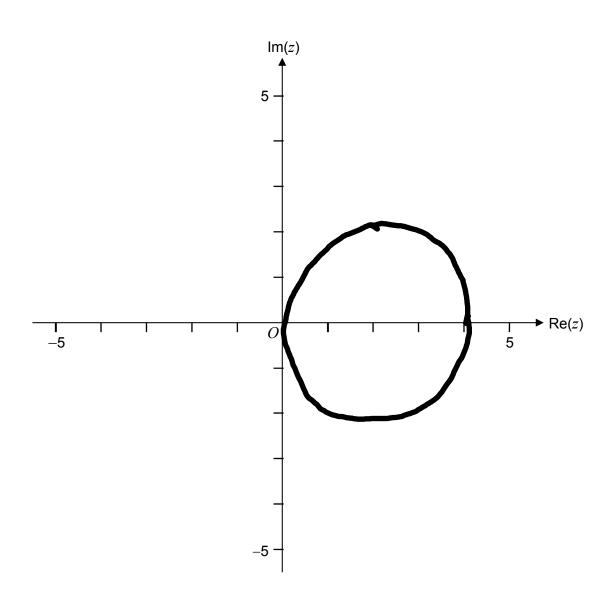
=>Ø=0.713, S.S6, 号, 号

r = 3 + 2c so at $c = \frac{3}{4}$, $r = \frac{9}{2}$ and at $c = -\frac{1}{2}$, r = 2

Points of intersection: $(\frac{9}{2}, 0.723)$, $(\frac{9}{2}, 5.56)$, $(\frac{2}{3}, \frac{2\pi}{3})$ and $(2, \frac{12\pi}{3})$

9 (a) Sketch on the Argand diagram below, the locus of points satisfying the equation |z-2|=2

[2 marks]



9 (b)	Given that $ z-2 =2$ and $\arg(z-2)=-\frac{\pi}{3}$, express z in the form $a+bi$,	
	where a and b are real numbers.	[3 marks]
	$Z-\lambda=re^{i\theta}$	
	$\frac{Z-\lambda=re^{i\theta}}{=2e^{-\frac{i\pi}{3}}}=2(\omega s-\frac{\pi}{3}+is_{i,h}-\frac{\pi}{4})$	
	ユ=2005項+2isin=ラ+2	
	$a = 2605^{-1}3 + 2 = 3$ $b = 2\sin^{-1}3 = -13$	
	Z=3-53i	

Prove that 10 (a)

$$6 + 3\sum_{r=1}^{n} (r+1)(r+2) = (n+1)(n+2)(n+3)$$

[6 marks]

$$6+3 \sum_{i=1}^{n} (r+i)(n+i) = 6+3 \sum_{i=1}^{n} r^{2}+3r+2$$

$$= 6+3 \frac{n(n+i)(2n+i)}{6} + 9 \frac{n(n+i)}{2} + 6n$$

$$= \frac{1}{2} n(n+i)(2n+i) + \frac{9}{2} n(n+i) + 6(n+i)$$

$$= (n+i) \left[\frac{1}{2} n(2n+i) + \frac{9}{2} n + 6 \right]$$

$$= (n+i) \left[n^{2} + \frac{1}{2} n + 6 \right]$$

$$= (n+i) \left[n^{2} + \frac{1}{2} n + 6 \right]$$

$$= (n+i) (n+2)(n+3)$$

10	(b)	Alex substituted a few values of n into the expression $(n + 1)(n + 2)(n + 3)$ and made the statement:					
		"For all positive integers n ,					
		$6+3\sum_{r=1}^{n}(r+1)(r+2)$					
		is divisible by 12."					
		Disprove Alex's statement. [2 marks]					
		Consider the case when n=4,					
		$6 + 3 = (r+1)(r+2) = (n+1)(n+2)(n+3) = (5)(6)(7) = 35 \times 6 = 17.5 \times 12$					
		This is not a multiple of 12 and therefore Alex's statement is false					

The equation $x^3 - 8x^2 + cx + d = 0$ where c and d are real numbers, has roots α , β , γ .

When plotted on an Argand diagram, the triangle with vertices at α , β , γ has an area of 8. Given $\alpha = 2$, find the values of c and d.

Fully justify your solution.

[5 marks]

As the coefficients of the equation are real, $\beta = p+qi$ and $\chi = p-qi$ (complex conjugate pair)

Sum of roots (Ex) = 8

X+B+X=8

=> 9=8

B=3+8; and y=3-8i

d=-xpx=-146

C = ZMB = 2 (3+8i)+2(3-8i)+(3+8i)(3-8i)= 85

12 A curve, C_1 has equation y = f(x), where $f(x) = \frac{5x^2 - 12x + 12}{x^2 + 4x - 4}$

The line y = k intersects the curve, C_1

12 (a) (i) Show that $(k+3)(k-1) \ge 0$

[5 marks]

$$k = \frac{5x^2 - 12x + 12}{x^2 + 4x + 4} \implies k(x^2 + 4x + 4) = 5x^2 - 12x + 12$$

 $Rx^2 + 4kx + 4k - 6z^2 + 12x - 12 = 0$

 $\chi^{2}(R-5) + 4(k+3) \times + 4(k+3) = 0$

y=k intersects C, so the roots of the above equation are real

=7 b-4ac 70

$$=7(4(k+3))^2-4(k-s)(-4(k+3)) > 0$$

 $\Rightarrow |6(k+3)[h+3+k-5] \geqslant 0$

=> 16(k+3)(2k-1)>0

=>32(h+3)(h-1)70

=7 (k+3)(k-1)70

Question 12 continues on the next page

12	(a) (ii)	Hence find the	coordinates	of the stationa	ry point of C	that is a	maximum	noint
12	(a) (II)	nence ind the	Coordinates	or the Stationa	ry point of C	ı ınaı ıs a	IIIaxiiiiuiii	ροιπι.

[4 marks]

	L. marko
Maximum at R=-3 or R=1	
Substituting k into $(k-5)x^2+4(k+3)x-4(k+3)=0$	
k=-3	
$=7-8x^2=0$ So $x=0$	
Maximum point of C, is (0, -3)	

Show that the curve C_2 whose equation is $y = \frac{1}{f(x)}$, has no vertical asymptotes. 12 (b)

[2 marks]

 $\int_{0}^{2} -4ac = (-12)^{2} - 4(5)(12) LO$ So $5x^{2} - 12x + 12 \neq 0 \quad \forall x \quad \text{so } C_{1} \text{ has no vertical asymptotes}$

12 (c) State the equation of the line that is a tangent to both C_1 and C_2 .

[1 mark]