

Please write clearly in	n block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature	I declare this is my own work.	/

AS **FURTHER MATHEMATICS**

Paper 1

Monday 11 May 2020

Afternoon

Time allowed: 1 hour 30 minutes

Materials

- You must have the AQA formulae and statistical tables booklet for A-level Mathematics and A-level Further Mathematics.
- You should have a scientific calculator that meets the requirements of the specification. (You may use a graphical calculator.)

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question. If you require extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do **not** write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

For Exam	iner's Use
Question	Mark
1	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
TOTAL	

Answer all questions in the spaces provided.

Express the complex number $1 - i\sqrt{3}$ in modulus-argument form. 1

> let Z = 1 - i [3 Tick (✓) one box.

[1 mark]

$$2\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right)$$

$$2\bigg(\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}\bigg)$$

$$|Z| = \sqrt{1^2 + (-13)^2}$$

$$2\bigg(cos\Big(-\frac{\pi}{3} \Big) + i \, sin\Big(-\frac{\pi}{3} \Big) \bigg)$$

$$arg = tan^{-1}\left(-\frac{13}{1}\right)$$

$$= -I$$

$$2\left(\cos\left(-\frac{2\pi}{3}\right)+i\sin\left(-\frac{2\pi}{3}\right)\right)$$

$$\therefore z = 2\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right)$$

Given that 1-i is a root of the equation $z^3 - 3z^2 + 4z^2 - 2 = 0$, find the 2 other two roots.

Tick (✓) one box.

$$-1+i$$
 and -1

Iti must be a root as it is the [1 ma conjugate pair of 1-i.

$$\mathbf{1}+i$$
 and $\mathbf{1}$

-1+i and 1

$$(-1)^3 - 3(-1)^2 + 4(-1) - 2 = -10$$

 $\therefore -1$ is not a root

1+i and -1

checking if 1 is a root:
$$(1)^3 - 3(1)^2 + 4(1) - 2 = 0$$

l is a root.

3	Civon	12	1)/2	2)/2	α \sim 1	n and	a > '
3	Given	(x -	I(x -	Z)(X -	a) < 0	J and	a > 2

Find the set of possible values of x.

Tick (✓) one box.

[1 mark]

$${x : x < 1} \cup {x : 2 < x < a}$$

As
$$(x-1)(x-2)(x-a) \neq 0$$

 $x \neq 1, x \neq 2, x \neq a$

$${x : 1 < x < 2} \cup {x : x > a}$$

As
$$(x-1)(x-2)(x-a)<0$$
.

 $\therefore \{x:x<1\}\cup\{x:2< x<\alpha\}$

$${x : x < -a} \cup {x : -2 < x < -1}$$

$${x: -a < x < -2} \cup {x: x > -1}$$

Turn over for the next question

The matrices **A** and **B** are such that box

Do not write outside the

$$\mathbf{A} = \begin{bmatrix} 2 & a & 3 \\ 0 & -2 & 1 \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} 1 & -3 \\ -2 & 4a \\ 0 & 5 \end{bmatrix}$$

4 (a) Find the product
$$AB$$
 in terms of a .

		7		[2 marks]
T2 0 37	1 -3		2-20+0	-6+4a2+15
0-2 1	-2 4a	τ	0+4+0	0-8a+5
(2x3)	(3x2)	,		

: must be a 2x2	ε	2-2a	402+9	
matrix		4	-8a+5	

4 (b) Find the determinant of **AB** in terms of
$$a$$
.

[1 mark]

=
$$(2-2a)(-8a+5) - 4(4a^2+9)$$

= $-16a + 10 + 16a^2 - 10a - 16a^2 - 36$
= $-26a - 26$

4 (c)	Show that AB is singular when $a = -1$	[2 marks]
	IF AB is singular, det AB = 0	
	-26 - 26a = 0	
	-26a = 26	
	a = -1	

Turn over for the next question

Turn over ▶

5 (a) Show that

$$r^2(r+1)^2 - (r-1)^2r^2 = pr^3$$

where p is an integer to be found.

[1 mark]

$(r^2(r+1)^2 - (r-1)^2r^2 =$	*Expand *
$(r^2(r^2+2r+1))-(r^2(r^2-2r+1))=$	
$(r^{4} + 2r^{3} + r^{2}) - (r^{4} - 2r^{3} + r^{2}) =$	
413	

∴ ρ = 4

5 (b) Hence use the method of differences to show that

$$\sum_{r=1}^{n} r^3 = \frac{1}{4}n^2(n+1)^2$$

[3 marks]

$$\sum_{r=1}^{n} 4r^3 = \sum_{r=1}^{n} \left[r^2 (r+1)^2 - (r-1)^2 r^2 \right]$$

Plugging in numbers:

$$f(1)$$
 $1^2(2)^2 - 0^2(1)^2$

$$f(2)$$
 $2^{2}(3)^{2} - 1^{2}(2)^{2}$

$$f(3) \quad 3^2(4)^2 - 2^2(3)^2$$

$$f(n-1) (n-1)^2 n^2 - (n-2)^2 (n-1)^2$$

$$\therefore \sum_{r=1}^{n} 4r^3 = n^2(n+1)^2$$

$$\Rightarrow \pm \frac{\hat{\Sigma}}{1} + r^3 = \frac{\hat{\Sigma}}{1} + r^3$$

$$\frac{1}{16} \sum_{i=1}^{n} r^3 = \frac{1}{4} n^2 (n+1)^2$$
 (as required)

6 Anna has been asked to describe the transformation given by the matrix

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}$$

She writes her answer as follows:

The transformation is a rotation about the x-axis through an angle of θ , where

$$\sin \theta = \frac{1}{2}$$
 and $-\sin \theta = -\frac{1}{2}$ $\theta = 30^{\circ}$

Identify and correct the error in Anna's work.

[2 marks]

Anna gave the wrong angle (the angle 15 not 30°).

$$Sin\theta = \frac{1}{2}$$
 $\theta = 30^{\circ}$ or $\theta = 150^{\circ}$
 $cos\theta = -\frac{13}{2}$ $\theta = 150^{\circ}$ or $\theta = -150^{\circ}$

when $n=1$ $7'-3'=4=4(1)$ As 4 is divibile 4 , it is true if Assume $n=k$ is divisible by 4. 7^k-3^k is divisible by 4. when $n=k+1$ $C(k+1)=7^{k+1}-3^{k+1}$ $=7x7^k-3x3^k$ $C(k+1)-f(k)=7x7^k-3x3^k-(7^k-3^k)$ $=6x7^k-2x3^k$ $=4x7^k+2(7^k-3^k)$ $=4x7^k+2f(k)$ Conclusion $f(k+1)=4x7^k+3f(k)$ Conclusion $f(k+1)$ is divisible by 4, as $4x7^k$ is divisible and $f(k)$ is assumed to be divisible by 4. As $f(1)$ is divisible by 4, by induction. $f(1)$ is divisible by 4 for 11 is divisible by 4.	when	n=1	
Assume $n=k$ is divisible by 4. $7^{k}-3^{k}$ is divisible by 4. When $n=k+1$ $F(K+1)=7^{k+1}-3^{k+1}$ $=7x7^{k}-3x3^{k}$ $F(K+1)-f(K)=7x7^{k}-3x3^{k}-(7^{k}-3^{k})$ $=6x7^{k}-2x3^{k}$ $=4x7^{k}+2(7^{k}-3^{k})$ $=4x7^{k}+2f(K)$ $F(K+1)=4x7^{k}+3f(K)$ Conclusion $F(K+1) = 4x7^{k} + 3f(K)$ As $f(I)$ is divisible by 4, as $4x7^{k}$ is divisible by 4. As $f(I)$ is divisible by 4, by induction.			0 0 10 10 10 10
Assume $n=k$ is divisible by 4. $7^{k}-3^{k}$ is divisible by 4. When $n=k+1$ $F(K+1)=7^{k+1}-3^{k+1}$ $=7x7^{k}-3x3^{k}$ $F(K+1)-f(K)=7x7^{k}-3x3^{k}-(7^{k}-3^{k})$ $=6x7^{k}-2x3^{k}$ $=4x7^{k}+2(7^{k}-3^{k})$ $=4x7^{k}+2f(K)$ $F(K+1)=4x7^{k}+3f(K)$ Conclusion $F(K+1) = 4x7^{k}+3f(K)$ As $f(K) = 4x7^{k} = 4x$	+ - (5 - 4 = 4(1)	
The 3k is divisible by 4. When $n = k+1$ $F(K+1) = 7^{K+1} - 3^{K+1}$ $= 7 \times 7^{K} - 3 \times 3^{K}$ $F(K+1) - f(K) = 7 \times 7^{K} - 3 \times 3^{K} - (7^{K} - 3^{K})$ $= 6 \times 7^{K} - 2 \times 3^{K}$ $= 4 \times 7^{K} + 2(7^{K} - 3^{K})$ $= 4 \times 7^{K} + 2f(K)$ $F(K+1) = 4 \times 7^{K} + 3f(K)$ Conclusion $F(K+1) = 4 \times 7^{K} + 3f(K)$ Conclusion $F(K+1) = 4 \times 7^{K} + 3f(K)$ and $F(K) = 4 \times 7^{K} + 3f(K)$ As $f(I) = 4 \times 7^{K} + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + $			4, it is true for
when $n=k+1$ $ \frac{C(K+1)}{C(K+1)} = 7^{K+1} - 3^{K+1} $ $ = 7x7^{K} - 3x3^{K} $ $ \frac{C(K+1)}{C(K+1)} - \frac{C(K)}{C(K+1)} = 7x7^{K} - 3x3^{K} - (7^{K} - 3^{K}) $ $ = 6x7^{K} - 2x3^{K} $ $ = 4x7^{K} + 2(7^{K} - 3^{K}) $ $ = 4x7^{K} + 2f(K) $ $ \frac{Conclusion}{C(K+1)} = 4x7^{K} + 3f(K) $ Conclusion $ \frac{C(K+1)}{C(K+1)} = 4x7^{K} + 3f(K) $ As divisible by 4, as 4x7 ^K is divisible and $f(K)$ is assumed to be divisible by 4. As $f(I)$ is divisible by 4, by induction.	Assun	ne n=k is divisible	by 4.
$F(K+1) = 7^{K+1} - 3^{K+1}$ $= 7x7^{K} - 3x3^{K}$ $F(K+1) - f(K) = 7x7^{K} - 3x3^{K} - (7^{K} - 3^{K})$ $= 6x7^{K} - 2x3^{K}$ $= 4x7^{K} + 2(7^{K} - 3^{K})$ $= 4x7^{K} + 2f(K)$ $F(K+1) = 4x7^{K} + 3f(K)$ Conclusion $F(K+1) = 4x7^{K} + 3f(K)$ Conclusion $F(K+1) = 4x7^{K} + 3f(K)$ As divisible by 4, as 4x7 ^K is divisible and $F(K)$ is assumed to be divisible by 4. As $F(K)$ is assumed to be divisible by 4.	7 k- 3	k is divisible by 4.	
$F(K+1) = 7^{K+1} - 3^{K+1}$ $= 7x7^{K} - 3x3^{K}$ $F(K+1) - f(K) = 7x7^{K} - 3x3^{K} - (7^{K} - 3^{K})$ $= 6x7^{K} - 2x3^{K}$ $= 4x7^{K} + 2(7^{K} - 3^{K})$ $= 4x7^{K} + 2f(K)$ $F(K+1) = 4x7^{K} + 3f(K)$ Conclusion $F(K+1) = 4x7^{K} + 3f(K)$ Conclusion $F(K+1) = 4x7^{K} + 3f(K)$ As divisible by 4, as 4x7 ^K is divisible and $F(K)$ is assumed to be divisible by 4. As $F(K)$ is assumed to be divisible by 4.			
$F(K+1) - f(K) = 7x7^{K} - 3x3^{K}$ $= 6x7^{K} - 2x3^{K}$ $= 4x7^{K} + 2(7^{K} - 3^{K})$ $= 4x7^{K} + 2f(K)$ $f(K+1) = 4x7^{K} + 3f(K)$ Conclusion $f(K+1) = 4x7^{K} + 3f(K)$ and $f(K) = 4x7^{K} + 3f(K)$ As $f(I) = 4x7^{K} + 3f(K)$ $f(K+1) = 4x7^{K} + 3f(K)$ $f(K+$	when	n=k+1	
$F(K+1)-f(K) = 7x7^{K}-3x3^{K}-(7^{K}-3^{K})$ $= 6x7^{K}-2x3^{K}$ $= 4x7^{K}+2(7^{K}-3^{K})$ $= 4x7^{K}+2f(K)$ $f(K+1) = 4x7^{K}+3f(K)$ Conclusion $f(K+1) \text{ is divisible by 4, as } 4x7^{K} \text{ is divisible and } f(K) \text{ is assumed to be divisible by 4}$ As $f(I)$ is divisible by 4, by induction.	F(K+1)	= 7 K+1 - 3 K+1	
$= 6x7^{k} - 2x3^{k}$ $= 4x7^{k} + 2(7^{k} - 3^{k})$ $= 4x7^{k} + 2f(k)$ $f(k+1) = 4x7^{k} + 3f(k)$ Conclusion $f(k+1) = 4x7^{k} + 3f(k)$ and $f(k) = 4x7^{k} + 3f(k)$ and $f(k) = 4x7^{k} + 3f(k)$ As $f(1) = 4x7^{k} + 3f(k)$ $f(k+1) = 4x$		= 7x7 ^K -3x3 ^K	
$= 6x7^{k} - 2x3^{k}$ $= 4x7^{k} + 2(7^{k} - 3^{k})$ $= 4x7^{k} + 2f(k)$ $f(k+1) = 4x7^{k} + 3f(k)$ Conclusion $f(k+1) = 4x7^{k} + 3f(k)$ and $f(k) = 4x7^{k} + 3f(k)$ and $f(k) = 4x7^{k} + 3f(k)$ As $f(1) = 4x7^{k} + 3f(k)$ $f(k+1) = 4x$	F(K+1)	$-f(K) = 7x7^{K} - 3x$	$3^{k} - (7^{k} - 3^{k})$
= $4 \times 7^{K} + 2(7^{K} - 3^{K})$ = $4 \times 7^{K} + 2f(K)$: $f(K+1) = 4 \times 7^{K} + 3f(K)$ Conclusion $f(K+1)$ is divisible by 4, as 4×7^{K} is divisible and $f(K)$ is assumed to be divisible by 4. As $f(1)$ is divisible by 4, by induction.		•	-
= $4x7^k + 2f(k)$: $f(k+1) = 4x7^k + 3f(k)$ Conclusion $f(k+1)$ is divisible by 4, as $4x7^k$ is divisible and $f(k)$ is assumed to be divisible by 4. As $f(1)$ is divisible by 4, by induction.			
: $f(K+1) = 4 \times 7^K + 3f(K)$ Conclusion $f(K+1) \text{ is divisible by } 4, \text{ as } 4 \times 7^K \text{ is divisible and } f(K) \text{ is assumed to be divisible by } 4$ As $f(I)$ is divisible by 4 , by induction.			
Conclusion $f(K+1)$ is divisible by 4, as 4×7^{K} is divisible and $f(K)$ is assumed to be divisible by 4 As $f(1)$ is divisible by 4, by induction.	. 60		
$f(K+1)$ is divisible by 4, as 4×7^K is divisible and $f(K)$ is assumed to be divisible by 4. As $f(1)$ is divisible by 4, by induction.		•	
and $f(K)$ is assumed to be divisible by 4 As $f(I)$ is divisible by 4, by induction.			LAX TK is divisible
As f(1) is divisible by 4, by induction.			
			•
+ "-3" is divisible by 4 for not.			
· ·	+ "-	3' is divisible by 4 f	pr nzl.
· · · · · · · · · · · · · · · · · · ·			
<u> </u>			

8 (a) Prove that

$$\tanh^{-1} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$$

[5 marks]

Let
$$y = \tanh^{-1}x$$

 $tanhy = x$

Write tanky in exponential form:

$$x = \frac{e^{y} - e^{-y}}{2} = \frac{e^{2y} - 1}{e^{2y} + 1}$$

$$x(e^{2y}+1) = e^{2y}-1$$

$$xe^{2y} + x = e^{2y} - 1$$

$$x+1=e^{2y}-xe^{2y}$$

Isolate e2y

$$x+1 = e^{2y}(1-x)$$

$$\frac{x+1}{1-x} = e^{2y}$$

$$\ln\left|\frac{x+1}{1-x}\right| = 2y$$

$$\frac{1}{2}\left|u\left(\frac{x+1}{1-x}\right)=y\right|$$

As
$$y = \tanh^{-1}(x)$$

$$\frac{1}{2} \ln \left| \frac{x+1}{1-x} \right| = \tanh^{-1}(x)$$
 (as required)

	·
8 (b)	Prove that the graphs of
	$y = \sinh x$ and $y = \cosh x$
	do not intersect.
	[3 marks]
	Write both equations in exponential forms $y = e^{x} - e^{-x}, y = e^{x} + e^{-x}$
	$y = e^{x} - e^{-x}$ $y = e^{x} + e^{-x}$
	2 2
	Carrada Hear
	Equate them
	$e^{x}-e^{-x} = e^{x}+e^{-x}$
	$\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$
	2 2
	$e^{x} - e^{-x} = e^{x} + e^{-x}$
	$O = 2e^{-x}$
	But e-x 70
	the graphs y=sinhx and y=coshx do not
	- ·
	Intersect.

- The quadratic equation $2x^2 + px + 3 = 0$ has two roots, α and β , where $\alpha > \beta$. 9
- **9** (a) (i) Write down the value of $\alpha\beta$.

[1 mark]

$$\alpha\beta = \frac{C}{a} = \frac{3}{2}$$
let $2x^2 + \rho x + 3 = 0$

9 (a) (ii) Express $\alpha + \beta$ in terms of p.

[1 mark]

$$\alpha + \beta = -\frac{b}{a} = -\frac{\rho}{2}$$

Hence find $(\alpha - \beta)^2$ in terms of p. 9 (b)

[2 marks]

Expand
$$(\alpha - \beta)^2$$

$$(\alpha - \beta)^2 = \alpha^2 - 2\alpha\beta + \beta^2$$

$$= \left[\alpha^2 + \beta^2\right] - 2\alpha\beta$$

$$= [(\alpha + \beta)^2 - 2\alpha\beta] - 2\alpha\beta$$

$$= (\alpha + \beta)^2 - 4\alpha\beta$$

As $\alpha + \beta = -\frac{P}{2}$ and $\alpha \beta = \frac{3}{2}$

$$\Rightarrow \left(\frac{-\rho}{2}\right)^2 - 4\left(\frac{3}{2}\right)$$

$$= \frac{\rho^2}{4} - 6$$

9 (c)	Hence find, in terms of p , a quadratic equation with roots $\alpha-1$ and $\beta+1$ [4 marks]
	$(\alpha - 1) + (\beta + 1) = \alpha + \beta = \frac{-b}{\alpha} = \frac{-\rho}{2}$
	$(\alpha-1)(\beta+1) = \alpha\beta + \alpha-\beta-1$
	From part b, we know $\alpha - \beta = \sqrt{\frac{p^2}{4} - 6}$ $\Rightarrow \frac{3}{2} + \sqrt{\frac{p^2}{4} - 6} - 1$ $= \frac{1}{2} + \sqrt{\frac{p^2}{4} - 6}$
	Insert $(\alpha-1)+(\beta+1)$ and $(\alpha-1)(\beta+1)$ values into a
	quadratic equation:
	$x^{2} - x(-\frac{P}{2}) + (\frac{1}{2} + \sqrt{\frac{P^{2}}{4} - 6}) = 0$
	$x^2 + \frac{\rho}{2}x + \left(\frac{1}{2} + \left(\frac{\rho^2}{4} - 6\right)\right) = 0$

10 (a) Show that the equation

$$y = \frac{3x - 5}{2x + 4}$$

can be written in the form

$$(x+a)(y+b)=c$$

where a, b and c are constants to be found.

[3 marks]

$$y(2x+4) = 3x-5$$

(2)
$$2xy + 4y = 3x - 5$$
 (2)

$$xy + 2y = \frac{3}{2}x - \frac{5}{2}$$

$$xy + 2y - \frac{3}{2}x + \frac{5}{2} = 0$$

$$xy + 2y - \frac{3}{2}x - 3 = -\frac{11}{2}$$

$$(x-2)(y-\frac{3}{2}) = -11$$

$$a = -2$$
, $b = -\frac{3}{2}$, $c = -\frac{11}{2}$

10 (b) Write down the equations of the asymptotes of the graph of

$$y = \frac{3x - 5}{2x + 4}$$

[2 marks]

Using part a answer $(x-2) \neq 0$, $x \neq 2$

$$(x-2)\neq 0$$
, $x\neq 2$

$$(y-\frac{3}{2}) \neq 0, y \neq \frac{3}{2}$$

: graph asymptotes at
$$x = -2$$
.
: $(y - \frac{3}{2}) \neq 0$, $y \neq \frac{3}{2}$
: graph asymptotes at $y = \frac{3}{2}$.

box

10 (c) Sketch, on the axes provided, the graph of

$$y = \frac{3x - 5}{2x + 4}$$

[3 marks]

Asymptotes at x = -2 and $y = \frac{3}{2}$

At y=0,

0 = 3x - 5

 $x = \frac{5}{3}$

At x=0.

y= -5

Turn over ▶

11	Sketch the polar graph of
----	---------------------------

$$r=\sinh\theta+\cosh\theta$$

for $0 \leq \theta \leq 2\pi$

[3 marks]

$$\frac{\sinh\theta + \cosh\theta = \frac{e^{\theta} - e^{-\theta}}{2} + \frac{e^{\theta} + e^{-\theta}}{2}}{2}$$

⇒	Sinho	+	Cosho =	eo

Do not write	
outside the	
box	

The mean value of the function f over the interval $1 \le x \le 5$ is m.

The graph of y = g(x) is a reflection in the *x*-axis of y = f(x).

The graph of y = h(x) is a translation of y = g(x) by $\begin{bmatrix} 3 \\ 7 \end{bmatrix}$

Determine, in terms of m, the mean value of the function h over the interval $4 \le x \le 8$

[2 marks]

· Reflection in the x-axis changes the mean from m to -m.

The translation of y = g(x) by $\begin{bmatrix} \frac{2}{3} \end{bmatrix}$ changes the mean, -m, to -m+7

Mean = -m+7

Turn over for the next question

Turn over ▶

Line l_1 has equation

$$\frac{x-2}{3} = \frac{1-2y}{4} = -z$$

and line l_2 has equation

$$\mathbf{r} = \begin{bmatrix} -7 \\ 4 \\ -2 \end{bmatrix} + \mu \begin{bmatrix} 12 \\ a+3 \\ 2b \end{bmatrix}$$

13 (a) In the case when l_1 and l_2 are parallel, show that a=-11 and find the value of b. [4 marks]

Rearranging le equation:

$$\frac{x-2}{3} = \frac{y-\frac{1}{2}}{-2} = \frac{z-0}{-1}$$

$$\ell_1 : r = \begin{pmatrix} 2 \\ \frac{1}{2} \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ -2 \\ -1 \end{pmatrix}$$

As le and le are parallel they must be a multiple of eachother

$$12 = 3p$$
 $a+3 = -2p$

$$\rho = 4$$
 $\alpha + 3 = -2(4)$

$$2b = -p$$

$$2h = -4$$

$$b = -2$$

13 (b) In a different case, the lines l_1 and l_2 intersect at exactly one point, and the value of b is 3

Do not write outside the box

Find the value of a.

[5 marks]

When I, and Iz intersect, the line equations are both equal.

$$\ell_{1} = \begin{pmatrix} \frac{2+3\lambda}{2} & & \\ \frac{1}{2} - 2\lambda & & \\ -\lambda & & \end{pmatrix}$$

$$\ell_{2} = \begin{pmatrix} -7+12\mu & \\ 4+\mu(\alpha+3) & \\ -2+6\mu \end{pmatrix}$$

$$\begin{pmatrix}
2+3\lambda \\
\frac{1}{2}-2\lambda
\end{pmatrix} = \begin{pmatrix}
-7+12\mu \\
4+\mu(a+3) \\
-2+6\mu
\end{pmatrix}$$

$$2+3\lambda = -7+12\mu$$
 $\frac{1}{2}-2\lambda = 4+\mu(a+3)$
 $9=12\mu-3\lambda-1$ $-\frac{7}{2}=\mu(a+3)+2\lambda-1$

$$-\lambda = -2 + 6\mu$$

$$2 = 6\mu + \lambda - 3$$

$$(18\mu + 3\lambda) + (12\mu - 3\lambda) = 6 + 9$$

$$30\mu = 15$$

$$\mu = \frac{1}{2} \Rightarrow \lambda = -1$$

Subbing
$$\mu = \frac{1}{2}$$
 and $\lambda = -1$ into (2)
 $-\frac{7}{4} = \frac{1}{2}(a+3) + 2(-1)$

$$-\frac{3}{2} = \frac{1}{2}$$
 (at3)

Turn over ▶

$$-3=a+3 \Rightarrow a=-6$$

14 (a) Given

$$\frac{x+7}{x+1} \le x+1$$

show that

$$\frac{(x+a)(x+b)}{x+c} \ge 0$$

where a, b, and c are integers to be found.

[4 marks]

$$0 \leqslant x+1 - x+7$$

$$x+1$$

$$0 \leqslant \frac{(x+1)^2 - x+7}{x+1}$$

$$0 \le \frac{x^2 + 2x + 1 - x - 7}{x + 1}$$

$$0 \le \frac{x^2 + x - 6}{x + 1}$$

$$0 \le \frac{(x+3)(x-2)}{(as required)}$$

$$\alpha = 3, b = -2, c = 1$$

14 (b) Briefly explain why this statement is incorrect.

$$\frac{(x+p)(x+q)}{x+r} \ge 0 \Leftrightarrow (x+p)(x+q)(x+r) \ge 0$$

[1 mark]

X=-r 18 a solution of the inequality on the right hand side, but not the one on the left hand side

14 (c) Solve

Do not write outside the box

$$\frac{x+7}{x+1} \le x+1$$

[2 marks]

$$0 \le (x+3)(x-2) \Rightarrow \text{critical values:}$$

$$x+1 \qquad -3, -1, 2$$

when x = -4

when
$$x=0$$
 (negative, so -1,0 and 1 does not -6 = $\frac{(3)(-2)}{1}$ follow the inequality).

when
$$x = 2$$
 (2 and above follows the inequality)
$$0 = \frac{(5)(0)}{3}$$

Turn over for the next question

A segment of the line y = kx is rotated about the x-axis to generate a cone with vertex O.

The distance of O from the centre of the base of the cone is h.

The radius of the base of the cone is r.

15 (a) Find k in terms of r and h.

[1 mark]

K is the	aradient of the line.
K= C	
h	

15 (b) Use calculus to prove that the volume of the cone is

$$\frac{1}{3}\pi r^2 h$$

[3 marks]

Volume =
$$\pi \int_{0}^{h} y^2 dx$$

$$= \pi \int_{0}^{h} \left(\frac{rx}{n}\right)^{2} dx$$

$$= \frac{r^2 \pi}{h^2} \int_0^h x^2 dx$$

$$= r^2 \pi \left[\frac{3c^3}{3} \right]^h$$

$$=\frac{\Gamma^2\Pi}{h^2}\times\frac{h^3}{3}-C$$

Turn over ▶

Do not	write
outside	the
ho	v

16	A and B are non-singular square matrices.	
16 (a)	Write down the product $\mathbf{A}\mathbf{A}^{-1}$ as a single matrix.	[1 mark]
	$AA^{-1} = T \qquad eg. \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	
16 (b)	${\bf M}$ is a matrix such that ${\bf M} = {\bf A}{\bf B}$.	
	Prove that $\mathbf{M}^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$	[3 marks]
	M= AB B-'A-' M= B-'A-' AB B-'A-' M= B-' TB B-'A-' M M-' = B-' TBM-' B-'A-' T = B-' BM-' B-'A-' = M-' (as require	$AA^{-1} = T$ $BB^{-1} = T$ $MM^{-1} = T$ d

Do not	write
outside	the
box	(

The polar equation of the circle C	is
--------------------------------------	----

$$r = a(\cos\theta + \sin\theta)$$

Find, in terms of a, the radius of C.

Fully justify your answer.

[4 marks]

Remember:
$$r^2 = x^2 + y^2$$

$$YCOSD = C$$

$$\Gamma^2 = ra(\cos\theta + \sin\theta)$$

$$r^2 = a(r\cos\theta + r\sin\theta)$$

$$x^2 + y^2 = a(x + y)$$

$$x^2 + y^2 = ax + ay$$

$$x^2 - ax - ay + y^2 = 0$$

$$x^{2} - ax + \frac{a^{2}}{4} + y^{2} - ay + \frac{a^{2}}{4} = \frac{a^{2}}{2}$$

$$\left(x-\frac{a}{2}\right)^2+\left(y-\frac{a}{2}\right)^2=\left(\frac{a}{12}\right)^2$$

The locus of points L_1 satisfies the equation |z| = 2

The locus of points L_2 satisfies the equation $\arg(z+4) = \frac{\pi}{4}$

18 (a) Sketch L_1 on the Argand diagram below.

[1 mark]

18 (b) Sketch L_2 on the Argand diagram above.

[1 mark]

Gradient =
$$tan(\frac{\pi}{4}) = 1$$

Straight line from (-4,0)

Do not	write
outside	the
ho	Y

18 (c)	The complex number $a+{\rm i}b$, where a and b are real, lies on L_1
	The complex number $c+\mathrm{i}d$, where c and d are real, lies on L_2
	Calculate the least possible value of the expression
	$(c-a)^2 + (d-b)^2$ [3 marks]
	Find where line y = -x and y = x+4 intersect
	-x=x+4
	-2x = 4
	x = -2, $y = 2$ $(-2,2)$
	Calculate distance from $(-2,2)$ to origin. $(-2-0)^2 + (2-0)^2 = 2/2$
	Shortest distance = 18-2
	: least possible value = (18-2)2
	= 8 - 418 + 4
	= 12-8[2
	
	END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
11	Copyright © 2020 AQA and its licensors. All rights reserved.

