AQA Mechanics Topic Questions from Papers Moments and Equilibrium Answers

PhysicsAndMathsTutor.com

	$T + 58.8 = 20 \times 9.8$ T = 137.2 N Total	M1 A1 A1	6 6	Vertical equation with <i>T</i> or moments equation. Correct equation Correct tension
1	$5T_A = 20 \times 9.8 \times 1.5$ $T_A = \frac{20 \times 9.8 \times 1.5}{-5} = 58.8 \text{ N}$	M1 A1 A1		Moment equation. Correct equation Correct tension

)

2 (a)		B1	1	Arrows + labels, w in centre
(b)	$M(A) \qquad 0.4W = 0.6T_B$ $T_B = \frac{2W}{3}$ $\text{Res} \uparrow \text{ or } M(B) \qquad T_A = \frac{W}{3}$	M1 A1 M1 A1	4	Moments equation Accept 2 dp for each A1
(c)	Lamina is uniform \Rightarrow weight acts at centre	B1	1	
	Total		6	
	F			

(Q2, Jan 2007)

	Total		9		
	The mass is a particle The plank is a rigid rod				P
(d)	eg Woman is a particle	E1	1		
(c)	Centre of mass of rod is 3 m from river bank	E1	1	Centre of mass is at centre of rod	
	Mass is $6\frac{7}{8}$ kg	A1	4	Accept 6.88 and 6.87	
	$m = 6\frac{7}{8}$				
	55 = 8m	A1			
	$50 \times 2 = 15 \times 3 + m \times 8$	M1A1		M1 3 terms, 2 correct	
(b)	Taking moments about <i>A</i> :				
	x = 0.9	A1	3	0.9	A1
	$3 \times 15 = 50x$	M1		Moments about any point (correct)	M1
	Taking moments about A, edge of bank:			Or resolve $R = 65g$	B1
• ()	bank	21			
3 (a)	Centre of mass of rod is 3 m from river	B1		Use of centre of mass is centre of rod	

(Q4, June 2007)

	Total		11	
	= 2.96 m	A1	6	Accept $2\sqrt{3} - \frac{1}{2}$
	$x = \frac{11000}{40}$	m1		Dep on M1
	40gx + 20g = 138.56g 118.56			
	$= S.4\cos 30$	A1		
	$80gx\cos 60 + 20g.2\cos 60$	M1A1		M1 for 3 terms, all moments
	S = 40g Moments about A:	RI		
(c)	Resolve horizontally: S = 40a	D 1		
	= 40g or 392 N	A1	3	AG
	$CSHIG F = \mu K.$ $F = 0.4 \times 100g$	1111		ום ווט קשע
	= 100g	B1		Dan on B1
				marks in (b)
(U)	R = 20g + 80g			Must see $20g + 80g$ or $100g$ to obtain any
(b)	Perolya vartically:			
	60°			
	20g			
	80g			
	\mathbf{N}			
	$\backslash C$			
4 (a)	$\rightarrow S$	B2	2	B1 for any 4 correct

5 (a)	$\begin{array}{c c} \uparrow T_A & \uparrow T_B \\ \hline A & \downarrow 40g & B \end{array}$	B1	1	
(b)	Taking moments about A			
	$2.1 \times 40g = T_B \times 4$	M1 B1		B1 for 2.1
	$T_B = 21 \mathrm{g}$	A1	3	
(\mathbf{a})	Possible vortically $T \rightarrow T = 40c$	M1		
(C)	Resolve ventically $I_A + I_B = 40g$ $T_A - 19g$ or 186 N		2	
	$I_A = 175$ of 100 W	111	2	
(d)	Gravitational force acts through mid point	E1	1	
	of the rod			
	Total		7	

X

(Q2, June 2008)

X

(Q3, June 2009)

			-	1
(d)	Gravitational force acts through mid-point of the rod	E1	1	
(c)	Resolve vertically: $R_A + R_B = 50g$ $R_A = 30.8g$ or 302 N	M1 A1	2	Can be awarded in (b)
(b)	Taking moments about A: $3.2 \times 30g = R_B \times 5$ $R_B = 19.2g$	M1B1 A1	3	B1 for 3.2 AG
7 (a)	$\begin{array}{c c} R_A & R_B \\ \hline 20g & B \\ 30g & B \end{array}$	B2	2	B1 for four forces B2 for two different reactions and $30g$ and 20g marked

_

(Q3, Jan 2010)

8 (a)		B2	2	B1 for <i>S</i> and $6g$ (in correct place) B1 for <i>R</i> and <i>F</i> or combined vertic at <i>C</i>	cal force
(b)	$\frac{A}{A}$ Moments about C: $3 \times S \times \cos 20 = 6g \times 1 \times \cos 20$ S = 19.6 N or $2g$	M1A1 A1	3	M1 2 terms, 1 term correct R, F not correct 0 marks in (c)(i) a	and
(c)(i)	Moments about A: $2 \times 6g \times \cos 20 = R \times 3$ R = 36.8 N (or resolving, $R = 6g \cos 20 - S \cos 20$ $= 4g \cos 20$)	M1A1 A1		Or Moments about mid-point of rod: $2 \times S \times \cos 20 = P \times 1 \times \cos 20$ P = 39.2 N or $4g(Or resolving vertically P = 4g)$	
(ii)	Resolve parallel to AB: $S \cos 70 + F = 6g \cos 70$ $F = 4g \cos 70$ = 13.4 N	M1	5	$R = P \times \cos 20$ = 36.8 N $F = P \times \sin 20$ = 13.4 N	M1 A1 A1 M1 A1
(d)	$\begin{array}{l} -13.4 \text{ N} \\ (\text{or } F = 6g \sin 20 - S \sin 20 = 4g \sin 20) \\ \text{Using } F = \mu R : \\ 13.4 = \mu \times 36.8 \end{array}$	M1	5	$M1 '(c)(ii)' = \mu '(c)(i)'$	AI
	$\mu = 0.364 \text{or } \tan 20$ Total	A1√	2 12	$(\text{condone} \geq)$	

(Q7, June 2010)

9 (a)	$R_C \text{ or } 65g 17g R_D \text{ or } C \text{ or } Or Or D \text{ or } 38g 637 166.6 44g$	B1 B1	2	 B1: Two weights correct and in correct relative positions. B1: Two upward reaction forces, labelled differently. Note all forces must be shown as arrows and have labels.
(b)	Taking moments about C 3 × $17a + 2.6 \times 65a = 44a \times d$	B 1		weights. B1: Seeing 2.6
	$3 \times 17g + 2.0 \times 000g - 44g \times u$	M1 A1		M1: Three term moment equation including $17g$, $65g$ and $44g$ or 17 , 65 and 44, with different distances for the $17g$ and $65g$. A1: Correct equation.
	44d = 220			Ĩ
	a = 5 Distance is 5 – 4.6 = 0.4 m	A1	4	A1: Correct final answer.
	Alternative $R_{C} = 38g$ Taking moments about <i>D</i> 38g(4.6 + x) = 65g(2 + x) + 17g(1.6 + x) 174.8 - 130 - 27.2 = 44x x = 0.4	(B1) (M1) (A1) (A1)		Could take moments about any other point
(c)	Gravitational force (centre of mass or weight) at mid-point (or centre) of the plank	E1	1	E1: Correct explanation.
	Total		7	

_

(Q4, June 2011)

PhysicsAndMathsTutor.com

Q	Solution	- -	Marks	Total	Comments
10 (a)					
	72g 28g F				accept 'weight of man' or w_m etc for $72g$
	force diagram		B2	2	B1 for any error
(b)(i)	moments about P: $72g \times 6 \times \cos 69 + 28g \times 4 \times \cos 69$ $= S \times 8 \times \sin 69$ $(432g + 112g)\cos 69 = 8 S \sin 69$		M1 A1A1		3 terms including distance and angles A1 2 correct terms
	S = 255.8		A1		accept division seen eg $\frac{544g}{8\tan 69}$
	= 256N			4	
(ii)	resolve vertically: R = 28g + 72g = 100g resolve horizontally: S = F		B1 B1		
	using $F = \mu R$: $\mu = 256 \div 100g$ = 0.261		M1 A1	4	
		Total		10	
4(a)	using power = force \times velocity power = $(25 \times 42) \times 42$ power is 44 100 watts		M1 A1	2	(Q3, Jan 2012)
(b)	when speed is 15 m s ⁻¹ , 44100				
	15 = 2940N resistance force is $25 \times 15 = 375$ N		B1		
	accelerating force is $2940 - 375N$ = 2565		M1		
	$a = 1.71 \text{ ms}^{-2}$		m1 A1	4	
		Total		6	

cont	or			
	Resolving perpendicular to <i>S</i> : $R \cos\theta = mg \cos 2\theta$ Moments about <i>A</i> : $R 2a\cos\theta = mg \frac{1}{2} l \cos \theta$	(M1A1)		
	$4a R = mgl$ $4amg \cos 2\theta = mgl \cos \theta$ $l = \frac{4a \cos 2\theta}{\cos \theta}$	(A1)		
	or Resolving horizontally: $R \sin \theta = S \cos 2\theta$ Resolving vertically: $R \cos \theta + S \sin 2\theta = mg$	(M1A1)		Both attempted for M1 Both correct for A1
	Moments about A: $R \ 2a\cos\theta = mg\frac{1}{2}l\cos\theta$ $4a\ R = mgl$	(M1A1)		
	$R \cos \theta + R \frac{\sin \theta}{\cos 2\theta} \sin 2\theta = 4a \frac{R}{l}$ $l = \frac{4a \cos 2\theta}{\cos \theta}$ Te	(A1)	8	

(Q9, Jan 2013)

PhysicsAndMathsTutor.com

Q	Solution	Mark	Total	Comments
12 (a)(i)	Moments about Q	M1		Or
	$2.2 \times 25g = T_{\rm P} \times 4.2$	A1		Moments about any point M1A1
	$T_{\rm P} = 13.095 \times g$			Moments about any other point M1
	$T_{\rm P} = 128 \ {\rm N}$	A1		$T_{\rm P}$ A1; $T_{\rm Q}$ A1
	Resolving vertically			
	$T_{\rm P} + T_{\rm Q} = 25g \text{ or } 245$	M1		
	$T_{\rm Q} = 117 {\rm N}$	A1	5	
(ii)	Weight of plank acts through its centre	E1	1	
(b)	Resolve vertically	M1		Could use T rather than T_P , T_Q
	$T_{\rm P} + T_{\rm Q} = (25 + m)g = 2T_{\rm P}$	A1		Or
	Moments about <i>B</i>	M1		Moments about Q
	$T_{\rm P} \times 5 + T_{\rm Q} \times 0.8 = 25g \times 3$	A1		$T_{\rm P} \times 4.2 = 25g \times 2.2 - mg \times 0.8$
	$(25+m)g \times 2.9 = 25g \times 3$			1 (25) 12
				$\frac{-\times(25+m)g\times4.2}{2}$
				$=25g \times 2.2 - mg \times 0.8$
	$2.9mg = 25g \times 0.1$	M1		$2.9mg = 25g \times 0.1$
	29m = 25			29m = 25
				OR
				Moments about any point M1A1
				Moments about any other point M1A1
				Solution M1A1
	25			
	$m = 0.862$ or $\frac{1}{29}$	A1	6	
	Total		12	
5	In limiting equilibrium, using $F = \mu R$			$(\Omega A luna 2012)$
	Frictional force is $0.2 \times mg$	M1A1		(Q4, Julie 2013)
	Resolve horizontally			
	$m \times 15^2$			
	$r = 0.2 \times mg$			
	15 ²			
	$r = \frac{10}{0.2 \times a}$			
	-114.70	A 1	4	
	- 114./7 - 115	AI	4	
	= 113		4	
	Total		4	