1. Two particles A and B have position vectors \mathbf{r}_A metres and \mathbf{r}_B metres at time t seconds, where

$$\mathbf{r}_{A} = t \mathbf{i} + (3t - 1)\mathbf{j}$$
 and $\mathbf{r}_{B} = (1 - 2t \mathbf{i})\mathbf{i} + (3t - 2t \mathbf{i})\mathbf{j}$, for $t \ge 0$.

- (a) Find the values of *t* when *A* and *B* are moving with the same speed. [5]
- (b) Show that the distance, *d* metres, between *A* and *B* at time *t* satisfies

$$d^2 = 13t^4 - 10t^2 + 2.$$
 [3]

(c) Hence find the shortest distance between *A* and *B* in the subsequent motion. [6]

END OF QUESTION paper

Mark scheme

Question		on	Answer/Indicative content	Marks	Guidance		
			$\dot{\mathbf{r}}_A = 2t\mathbf{i} + 3\mathbf{j}$ $\dot{\mathbf{r}}_B = -4t\mathbf{i} + (3 - 4t)\mathbf{j}$	B1 (AOs 1.1) B1 (AOs 1.1)			
1		а	$(2\hbar)^2 + 9 = (-4\hbar)^2 + (3 - 4\hbar)^2$ $7\ell - 6t = 0 \Rightarrow t = \dots$	M1 (AOs 3.1a) M1 (AOs 1.1)	$ \dot{\mathbf{r}}_{A} = \dot{\mathbf{r}}_{B} $ with/without square root		
			$t = 0 \text{ or } t = \frac{6}{7}$	A1 (AOs 1.1) [5]	Expand and attempt to solve quadratic in t (to obtain two solutions) Both values of <i>t</i> must be given		
		b	$\mathbf{r}_{A} - \mathbf{r}_{B} = (3\ell - 1)\mathbf{i} + (-1 + 2\ell)\mathbf{j}$ $\sigma^{\ell} = (3\ell - 1)^{2} + (-1 + 2\ell)^{2}$ $= 9\ell^{4} - 6\ell^{\ell} + 1 + 4\ell^{4} + 1 = 13\ell^{4} - 10\ell^{\ell} + 2$	*M1 (AOs 3.1a) dep*M1 (AOs 1.1) A1 (AOs 2.2a) [3]	Consider $\pm (\mathbf{r}_{A} - \mathbf{r}_{B})$ Use of $d^{2} = \mathbf{r}_{A} - \mathbf{r}_{B} ^{2}$ AG Expand correctly to given answer	Condone one sign error Must show at least one intermediate step	
		С	$\frac{d}{dt}(d^2) = 52t^3 - 20t$ $\frac{d}{dt}(d^2) = 0 \Longrightarrow t = \dots$ $t = 0 \text{ and } t = \sqrt{\frac{5}{13}}$ Test nature of stationary point with correct value(s) of t	B1 (AOs 3.1a) *M1 (AOs 2.1a) A1 (AOs 1.1) B1 (AOs 2.1) dep*M1 (AOs	Set their derivative = 0 and solve for t Both values correct; accept 0.620 e.g. $\frac{d^2}{dt^2}(d^2) = 156t^2 - 20 > 0$		

	Substraitute their non-zero <i>t</i> into <i>d</i> or <i>d</i> ^e $d = \frac{1}{\sqrt{13}} \text{ or } 0.277$	1.1) A1 (AOs 2.2a) [6]	when $t^2 = \frac{5}{13}$ so minimum Dependent on all previous marks	Or any other valid method
				0.277350
	Total	14		