In this question, the unit vectors $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ are in the directions east and north.

Distance is measured in metres and time, *t*, in seconds.

A radio-controlled toy car moves on a flat horizontal surface. A child is standing at the origin and controlling the car.

When t = 0, the displacement of the car from the origin is $\begin{pmatrix} 0 \\ -2 \end{pmatrix}$ m, and the car has velocity $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$ m s⁻¹.

The acceleration of the car is constant and is $\begin{pmatrix} -1\\ 1 \end{pmatrix}$ m s⁻².

- i. Find the velocity of the car at time t and its speed when t = 8.
- ii. Find the distance of the car from the child when t = 8.

2. The directions of the unit vectors **i** and **j** are east and north.

The velocity of a particle, $\mathbf{v} \text{ ms}^{-1}$, at time *t* s is given by $\mathbf{v} = (16 - t^2)\mathbf{i} + (31 - 8t)\mathbf{j}.$

Find the time at which the particle is travelling on a bearing of 045° and the speed of the particle at this time.

[6]

[4]

[4]

1.

3. The map of a large area of open land is marked in 1 km squares and a point near the middle of the area is defined to be the origin. The vectors $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ are in the directions east and north.

At time *t* hours the position vectors of two hikers, Ashok and Kumar, are given by:

Ashok
$$\mathbf{r}_{\mathrm{A}} = \begin{pmatrix} -2 \\ 0 \end{pmatrix} + \begin{pmatrix} 8 \\ 1 \end{pmatrix} t$$
,
Kumar $\mathbf{r}_{\mathrm{K}} = \begin{pmatrix} 7t \\ 10 - 4t \end{pmatrix}$.

- i. Prove that the two hikers meet and give the coordinates of the point where this happens.
- ii. Compare the speeds of the two hikers.
- 4. A particle is initially at the origin, moving with velocity **u**. Its acceleration **a** is constant. At time *t* its displacement from the origin is $\mathbf{r} = \begin{pmatrix} x \\ y \end{pmatrix}$, where $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \end{pmatrix} t - \begin{pmatrix} 0 \\ 4 \end{pmatrix} t^2$.
 - i. Write down **u** and **a** as column vectors.
 - ii. Find the speed of the particle when t = 2.
 - iii. Show that the equation of the path of the particle is $y = 3x x^2$.

[3]

[2]

[3]

[4]

[3]

5.	A model boat has velocity $v = ((2t - 2)\mathbf{i} + (2t + 2)\mathbf{j})$ m s ⁻¹ for $t \ge 0$, where t is the time in seconds.	лі
	i is the unit vector east and j is the unit vector north. When $t = 3$, the position vector of the boat is $(3i + 14j)$ m.	
	(a) Show that the boat is never instantaneously at rest.	[2]
	(b) Determine any times at which the boat is moving directly northwards.	[2]
	(c) Determine any times at which the boat is north-east of the origin.	[5]
6.	A toy car moves on a horizontal surface. Its velocity in m s ⁻¹ is given by $v = 1.5i + 0.5tj$	
	where i and j are unit vectors east (<i>x</i> -direction) and north (<i>y</i> -direction) respectively and t is time in seconds.	he
	Initially the car is at the point 2 m north of the origin.	
	(a) Calculate the speed of the car after 3 seconds.	[2]
	(b) Find the position vector of the car after <i>t</i> seconds.	[3]
	(c) Show that the cartesian equation of the path of the car is $y = \frac{x^2}{9} + 2$.	[3]
7.	In this question, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ are unit vectors in the <i>x</i> - and <i>y</i> -directions.	
	A bird is flying in the vertical plane defined by these directions.	
	The origin is a point on the ground.	
	The position vector, r m, of the bird at time <i>t</i> seconds, where $t \ge 0$, is given by $\mathbf{r} = \begin{pmatrix} 0 \\ 8 \end{pmatrix} + \begin{pmatrix} 2 \\ -4 \end{pmatrix} t + \begin{pmatrix} 0 \\ 1 \end{pmatrix} t^2.$	
	(i) Find the velocity of the bird when $t = 2.5$.	[3]
	(ii) Find the time at which the speed of the bird is 10 m s^{-1} .	[3]
	(iii) Find the times at which the bird is flying at an angle of 45° to the horizontal.	[2]

Motion in Two Dimensions

8. The position vector **r** metres of a particle at time t seconds is given by

$$\mathbf{r} = (1 + 12t - 2t^2) \mathbf{i} + (t^2 - 6t)\mathbf{j}.$$

10. In this question the positive x and y directions are east and north respectively. A model boat sails from the origin with initial velocity $3ms^{-1}$ due west and moves with acceleration

$$\begin{pmatrix} -0.1 \\ 0.2 \end{pmatrix} \mathrm{m\,s}^{-2} \text{ for } 25 \mathrm{s.}$$

(a) Show that the velocity of the boat $\begin{pmatrix} -5.5\\ 5 \end{pmatrix}$ m s⁻¹.

(b) Find the cartesian equation of the path of the boat.

END OF QUESTION paper

[3]

[3]

Mark scheme

Ques	stion	Answer/Indicative content	Marks	Guidance
1	i	$v = \mathbf{u} + \mathbf{a}t$	M1	May be implied by either of the next two answers but not the final answer. Evidence of use of vectors in question necessary.
	i	Velocity $\mathbf{v} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ 1 \end{pmatrix} \left(= \begin{pmatrix} 2-t \\ t \end{pmatrix} \right)$	A1	
	i	When $t = 8$, $\mathbf{v} = \begin{pmatrix} -6 \\ 8 \end{pmatrix}$	A1	May be implied by the final answer
	i	speed $\sqrt{(-6)^2 + 8^2} = 10 \text{ m s}^{-1}$	A1	Cao but condone no units Give SC2 for 10 without working
	ii	$\mathbf{r} = \mathbf{r}_0 + \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$	4	Use of correct equation with substitution. Condone omission of \mathbf{r}_0 .
	ii		M1	Or equivalent equation
	ii	$\mathbf{r} = \begin{pmatrix} 0 \\ -2 \end{pmatrix} + \begin{pmatrix} 2 \\ 0 \end{pmatrix} \times 8 + \frac{1}{2} \times \begin{pmatrix} -1 \\ 1 \end{pmatrix} \times 8^2$	A1	Condone omission of $r_{\text{o}}.$ Follow through for their value of v
	ii	$\mathbf{r} = \begin{pmatrix} -16\\ 30 \end{pmatrix}$	A1	Cao but may be implied by a correct final answer.
	ii		44	Allow for 35.77 from $\mathbf{r} = \begin{pmatrix} -16 \\ 32 \end{pmatrix}$ and 37.57 from $\mathbf{r} = \begin{pmatrix} -16 \\ 34 \end{pmatrix}$
	II	Distance = 34 m	A1	Examiner's Comments
				This question was about motion in two dimensions using column vectors. It was well answered. Such marks as

			Motion in Two Dimensions were lost were usually as a result of candidates not fully answering the questions, omitting the velocity at time t and the speed in part (i) and the distance travelled in part (ii).
	Total	8	
2	Equate i and j components of \mathbf{v}	M1	The candidate recognises that the i and j components must be equal.
	$16 - t^2 = 31 - 8t$	A1	An equation is formed.
	$t^2 - 8t + 15 = 0$		
	(t-3)(t-5) = 0		
	<i>t</i> = 3 or 5	A1	May be implied by later working.
	When $t = 3$, v = 7 i + 7 j	B1	
	Speed when $t = 3$ is $7\sqrt{2} = 9.9 \text{ m s}^{-1}$	B1	
	The values of the i and j components must both be positive for the bearing to be 045°.	B1	This mark is dependent on obtaining A1 for the result $t = 3$ or 5. It is awarded if the speed for the case when $t = 5$ is not included (since $t = 5 \Rightarrow v = -9i - 9j$ and the bearing is 225°).
			Note: Candidates who obtain r and equate the east and north components should be awarded SC1 for the whole question.
	Alternative trial and error		
	The i and j components of v must be equal	M1	The candidate recognises that the i and j components must be equal.
	The i and j components of v must both be positive for the bearing to be 045°.	B1	This can be demonstrated during the question either by a suitable convincing diagram including 45°, or by a suitable convincing argument.
	At least one value of <i>t</i> is substituted	A1	Trial and error is used
	<i>t</i> = 3	A1	t = 3 is found by trial and error
	When $t = 3$, v = 7 i + 7 j	B1	

		Speed when $t = 3$ is $7\sqrt{2} = 9.9 \text{ m s}^{-1}$	B1	Motion in Two Dimensions
				Note Candidates who obtain r and equate the east and north components should be awarded SC1 for the whole question.
				Examiner's Comments
				In this question, candidates were given the velocity of a particle using i , j notation to denote east and north, and they were asked to find when it was travelling on a compass bearing of 045° and its speed at that time. This involved equating the components of v ; this gave a quadratic equation, leading to two possible times. Candidates then had to recognise that at one of these times the bearing was 225° not 45°. Many candidates obtained full marks on this question. A few made the mistake of trying to work with position vector instead of the velocity. A common mistake was to fail to eliminate the 225° case.
				given for this.
		Total	6	
3	i	Either $-2 + 8t = 7t$ Or $t = 10 - 4t$	M1	Forming an equation for t. Accept vector equation for this mark. May be implied by a statement that $t = 2$.
	i	$\Rightarrow t = 2$	A1	
	i	Substituting $t = 2$ in both expressions	B1	oe, eg showing $t = 2$ satisfies both equations or a vector equation.
	i	They meet at (14, 2)	B1	Accept $\begin{pmatrix} 14\\2 \end{pmatrix}$ Examiner's Comments
				Candidates were asked to prove the two hikers meet and this involved showing their position vectors are the same at some time ($t = 2$). Many lost a mark by not showing that this was true for both components when the position vectors were equated.

	ii	Ashok's speed is $\sqrt{8^2 + 1^2} = \sqrt{65}$	B1	Motion in Two Dimensions
	ii	Kumar's speed is $\sqrt{7^2 + (-4)^2} = \sqrt{65} \text{ km h}^{-1}$	B1	
				CAO from correct speeds
				SC1 for finding both velocities correctly but neither speed
	ii	They both walk at the same speed	B1	Examiner's Comments
				Candidates were asked to compare the speeds of the two hikers and most got this right. A few compared their velocities. Others did not know how to obtain the velocities from the given expressions in terms of t for the position vectors.
		Total	7	
4	i	$u = \begin{pmatrix} 2 \\ 6 \end{pmatrix}$	B1	
				Examiner's Comments
	i	$\mathbf{a} = \begin{pmatrix} 0 \\ -8 \end{pmatrix}$	B1	In this question the position of a particle at time <i>t</i> was given as a column vector. In part (i)candidates were asked to write down u and a as column vectors. Most were successful in this but a common mistake was to give v instead of u . $\begin{pmatrix} 2 \\ 6 \end{pmatrix}, \begin{pmatrix} 0 \\ -8 \end{pmatrix}$ Answer
	ii	$v = \mathbf{u} + \mathbf{a}t$		
	ii	$t = 2 \implies \mathbf{v} = \begin{pmatrix} 2 \\ 6 \end{pmatrix} + \begin{pmatrix} 0 \\ -8 \end{pmatrix} \times 2$	M1	Or equivalent. FT for their u and a

ii	$=\begin{pmatrix}2\\-10\end{pmatrix}$	A1	Motion in Two Dimensions Continue the FT for this mark
			FT from their v
ii	speed = $\sqrt{2^2 + (-10)^2}$ = 10.2 ms ⁻¹ (to 3sf)	B1	Examiner's Comments In the next part candidates were asked to find the speed at a certain time and this was wellanswered with many recovering from errors in part (i). Follow through was allowed for the values of u and a that they found in part (i). Common mistakes were sign errors and not distinguishingbetween speed and velocity. $\begin{pmatrix} 2 \\ -10 \end{pmatrix}$, 10.2 m s ⁻² Answer
iii	$x = ut \Rightarrow x = 2t \Rightarrow t = \frac{x}{2}$	M1	This mark may also be obtained for substituting x for $2t$ in the expression for y .
iii	$y = 6t - 4t^2$	B1	
iii	$y = 6 \times \frac{x}{2} - 4 \times \left(\frac{x}{2}\right)^2 = 3x - x^2$	A1	Examiner's Comments In the final part candidates were asked to show that the position vector at time <i>t</i> led to agiven cartesian equation for the path of the particle. This was answered confidently and almostentirely successfully.
iii	Alternative x = 2t		
iii	Substitute for <i>x</i> in given answer	M1	
iii	$y = 3x - x^2 \Longrightarrow y = 6t - 4t^2$	A1	
iii	This is the given expression for γ	B1	
	Total	8	

				Motion in Two Dimensions
			M1(AO3.1b)	May be implied but must be
		Require both components zero at the same <i>time</i> i component zero only when $t = 1$ and j		clear
		component only when	A1(AO2.4)	
5	а			
		t = -1 so there are no such times		Or say j component \geq 2 since <i>t</i>
			[2]	≥ 0
	_		[4]	
				Recognise velocity vector
			M1(AO3.3)	required
		This requires use of the velocity vector		
		Travelling due north means that the i component is zero and the j component +ve		
	b	So we need $2t - 2 = 0$ for i component, giving $t = 1$.		
		This gives j component $4 > 0$ so yes at	A1(AO2.4)	
		t=1.		
			[2]	Must test j component
		This requires use of the position vector	M1(AO3.1b)	
		either	,	Recognise position vector
			M1(AO1.1)	required
		$\mathbf{r} = \int \mathbf{v} dt \text{so} \mathbf{r} = \int ((2t-2)\mathbf{i} + (2t+2)\mathbf{j}) dt = (t^2 - 2t + C)\mathbf{i} + (t^2 + 2t + D)\mathbf{j}$		May use + C instead
		(l - 2l + C) i + $(l + 2l + D)$ j	A1(AO1.1)	
		r = 3 i +14 j when $t = 3$ so $C = 0$ and $D = -1$		
		so $\mathbf{r} = (t^2 - 2t)\mathbf{i} + (t^2 + 2t - 1)\mathbf{j}$		
	С	Or a = 2 i + 2 j when $t = 3$ v = 4 i + 8 j ,	M1(AO1.1)	
		a = 21 + 2j when $t = 3v = 41 + 8j$, $1 (22 - 22)(2 - 2)^2$	A1(AO1.1)	
		$\mathbf{r} = (4\mathbf{i} + 8\mathbf{j})(t-3) + \frac{1}{2}(2\mathbf{i} + 2\mathbf{j})(t-3)^2 + 3\mathbf{i} + 14\mathbf{j}$	M1(AO3.2b)	
		2		Must find a but may omit 3i +
		and so $\mathbf{r} = (\ell^2 - 2t)\mathbf{i} + (\ell^2 + 2t - 1)\mathbf{j}$	A1(AO2.1)	14j
		the boat is NE of O when the i and j components are equal and +ve	[5]	
			1	

		we require $f - 2t = f + 2t - 1$ so $t = 0.25$		Award even if +ve not
		this gives components of – 0.4375 so no.		mentioned
				Must be complete argument
		Total	9	
			M1(AO 1.1b)	
6	а	When $t = 3$, $ \mathbf{v} = 1.5\mathbf{i} + 1.5\mathbf{j} = \sqrt{1.5^2 + 1.5^2}$ $\frac{3}{2}\sqrt{2} = 2.12 \text{ m s}^{-1}$ Speed is	A1(AO 1.1b)	Substitute for <i>t</i> and attempt modulus
			[3]	
		$\mathbf{r} = \int \mathbf{v} dt = 1.5t \mathbf{i} + 0.5 \times \frac{t^2}{2} \mathbf{j} + \mathbf{c} = 1.5t \mathbf{i} + 0.25t^2 \mathbf{j} + \mathbf{c}$	M1(AO 1.1a)	Attempt to integrate both terms
	h		A1(AO 1.1b)	Allow without + c
	b	$t = 0$ and $\mathbf{r} = 2\mathbf{j} \Rightarrow \mathbf{c} = 2\mathbf{j}$		
			A1(AO 2.1)	Terms need not be collected
		$\mathbf{r} = 1.5t\mathbf{i} + (0.25t^2 + 2)\mathbf{j}$	[3]	
		$x = 1.5t$ and $y = 0.25t^2 + 2$	M1(AO 2.1)	Allow for either equation
	с	$(r)^2$	M1(AO 2.1)	Eliminate <i>t</i>
		$y = 0.25 \left(\frac{x}{1.5}\right)^2 + 2$	A1(AO 1.1b)	

		t = 6.9 (or -2.9) (to 2 sf)	A1	.1 Examiner's Comments Motion in T	
			[3]		d a given speed. This involved using a vector expression w how to go about this. Others obtained the right answer . However there were very good answers written by
				FT from their vector expression for v in part (i).	
		Either $2 = -4 + 2t \Rightarrow t = 3$	B1	FT from their vector expression for v in part (i).	
	iii	$\text{Liulei } 2 = -4 + 2l \rightarrow l = 3$	B1	Examiner's Comments	
		$Or -2 = -4 + 2t \Rightarrow t = 1$	[2]	In part (iii), candidates were asked to find the times wher Correct answers to this were somewhat uncommon. On the position vector rather than the velocity; most of those when the bird was flying above the horizon and not whe	e common mistake was to equate the components of e who did use the velocity considered only the case
		Total	8		
		$\mathbf{v} = \frac{\mathbf{d}\mathbf{r}}{\mathbf{d}t} = (12 - 2 \times 2t)\mathbf{i} + (2t - 6)\mathbf{j}$	M1 (AO 1.1a)	Attempt to differentiate at least one coefficient	
				Must use vector notation	
8	а		A1 (AO 2.5)	Examiner's Comments	
			[2]	Most candidates used vector notation accurately and su velocity.	ccessfully differentiated to obtain a correct expression for
	b	When $t = 3$ both components of velocity are zero,	M1 (AO 3.1a)	Equating at least one component of their vector velocity to zero	Do not allow M1 for solving $12 - 4t = 2t - 6$ unless at least one zero subsequently established

					Motion in Two Dimension
		so the particle is stationary at $t = 3$.	E1 (AO 2.2a)	Must be argued from two zero components	
			[2]		
				Examiner's Comments This was typically well answered with most candidates re	valising the requirement for both components to be zero
				at the same time.	
				Misconception It is not sufficient to equal starting point, candidates would need to check that the c	te the components and solve to find $t = 3$. From this components were zero to achieve the method mark.
		Total	4		
9	a	4i + 6j = -2j + 8a	M1 (AO 1.1a)	For use of vector equation $\mathbf{v} = \mathbf{u} + \mathbf{a}t$, or alternatively for finding both acceleration components separately	
9	u	a = 0.5 i + j m s ⁻²	A1 (AO 2.5) [2]	Must be vector form; do not allow final answer as separate components	Do not allow for the magnitude of the acceleration unless final answer is labelled as such
	b	$\mathbf{v} = -2\mathbf{j} + (0.5\mathbf{i} + \mathbf{j})t$ is directed east when -2 + t = 0	M1 (AO 3.1b)	For equating j component of velocity to zero, giving equation	

					Matian in Two Dimonsion
				for t	Motion in Two Dimensions
		t = 2, so boat sails east at time 2 s	A1 (AO	сао	
			3.2a)		
			[2]		
			M1 (AO	For any use of	
		Displacement in 4 s is $(-2\mathbf{j}) \times 4 + \frac{1}{2}(0.5\mathbf{i} + \mathbf{j}) \times 4^2$	3.1b)	For any use of $\mathbf{s} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$ with	Equation may include initial position term \mathbf{r}_{A}
				t = 4 and their a even if no	
				clarity about displacement/	
				position	
	с	= 4i (+ 0j)	A1 (AO 1.1)		
			M1 (AO		
		Position at time $t = 4$ gives $\mathbf{r}_A + 4\mathbf{i} = 5\mathbf{i} - 2\mathbf{j}$	3.1b)	For correct use of position	May be correct carlier, if original
				vectors	May be earned earlier, if original equation is
			A1 (AO 1.1)		$\mathbf{r} = \mathbf{r}_0 + \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$
		$\mathbf{r}_{\mathrm{A}} = \mathbf{i} - 2\mathbf{j}$	[4]	Must be in vector form	-
		Total	8		
		(-3)	B1 (AO 2.1)	For correct vector seen	
		Initial velocity is	M1 (AO 2.1)	FT their initial velocity as long as	Allow full credit for an answer where the two components are
10	а			it is a vector	considered separately only if the
		$\mathbf{v} = \mathbf{u} + \mathbf{a}t = \begin{pmatrix} -3\\0 \end{pmatrix} + \begin{pmatrix} -0.1\\0.2 \end{pmatrix} 25$	A1 (AO 2.5)	AC, must be in vestor form	final answer is given as a vector
		(0) (0.2)	[3]	AG; must be in vector form	

				Motion in Two Dimensions
	$= \begin{pmatrix} -5.5\\5 \end{pmatrix}$			
	(2) (01)	M1 (AO		
	$\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^{2} = \begin{pmatrix} -3\\ 0 \end{pmatrix}t + \frac{1}{2}\begin{pmatrix} -0.1\\ 0.2 \end{pmatrix}t^{2}$	3.1a)		
			FT their u	
r	$\binom{x}{y} = \binom{-3t - 0.05t^2}{0.1t^2}$			Allow full credit for both
		M1 (AO 3.1a)		components considered separately
	Substitute $\ell = 10y$ into equation for x	A1 (AO		oopalatory
	$x = -3\sqrt{10y} - 0.5y$	1.1b)	Attempt to eliminate <i>t</i> ; FT their r	
		[3]		
	Total	6		