AQA Mechanics

Topic Questions from Papers

Kinematics

Answers

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com

1 (a)(i)	$a = 2 + 12e^{-t}$	M1A1	2	Differentiating, with at least one term	
(ii)	$2 < a \leq 14$	B1,B1 B1	3	For 2, For 14 Correct inequalities	
(b)	$s = t^2 + 12e^{-t} + c$	M1 A1	5	Integrating, with at least one term correct. Correct expression with or without c	
	$s = 0, t = 0 \Longrightarrow c = -12$	dM1		Finding <i>c</i>	
	$s = t^2 + 12e^{-t} - 12$	A1	4	Correct final expression	
	Total		9		

(Q3, Jan 2006)

F

2 (a)	$\mathbf{v} = (6t^2 - 2t)\mathbf{i} + (1 - 12t^2)\mathbf{j}$	M1 A1 A1	3	differentiating both components one component correct second component correct
(b)(i)	$\mathbf{v}\left(\frac{1}{3}\right) = \left(\frac{6}{9} - \frac{2}{3}\right)\mathbf{i} + \left(1 - \frac{12}{9}\right)\mathbf{j} = -\frac{1}{3}\mathbf{j}$	M1 A1	2	substituting the value for t into their v correct velocity
(ii)	Travelling due south	A1ft	1	correct description (Follow through from $\mathbf{v} = \pm k\mathbf{j}$)
(c)	a = (12t - 2)i - 24tj a(4) = 46i - 96j	M1 A1 A1	3	differentiating their velocity correct acceleration at time t correct acceleration at $t = 4$
(d)	F = 6(46i - 96j) = 276i - 576j	M1		apply Newton's second law correctly
	$F = \sqrt{276^2 + 576^2} = 639 \text{ N}$ or $a = \sqrt{46^2 + 96^2} = 106.45$	M1 A1	3	finding magnitude correct magnitude
	$F = 6 \times 106.45 = 639$ N		10	
	l otal		12	

(Q1, June 2006)

	Total		12		PMT
	$\left \mathbf{F}\right = 50(N)$	A1	5		
	$ \mathbf{F} = \sqrt{50^2 \cos^2 t + 50^2 \sin^2 t}$	M1		No unit vectors	
	$\mathbf{F} = -50\cos t \mathbf{i} - 50\sin t \mathbf{j}$	M1			
(c)	$\mathbf{a} = -2\cos t \mathbf{i} - 2\sin t \mathbf{j}$	M1A1			
		A1	3	k	
(b)	$\mathbf{v} = -2\sin t\mathbf{i} + 2\cos t\mathbf{j} - 0.4\mathbf{k}$	M1 A1		Differentiation Trig	
		B1	2		
(iii)	$t=2\pi, \qquad t=4\pi$	B1			
(ii)	$t = 2\pi, \ \mathbf{r} = 2\mathbf{i} + 7.49\mathbf{k}$	B1	1	Or $\mathbf{r} = 2\mathbf{i} + (10 - 0.8\pi)\mathbf{k}$ accept 7.5k	
3 (a)(l)	l = 0, r = 2l + 10K	DI	1		
2	t = 0, m = 2i + 10k	D1	1		

(Q5, Jan 2007)

4 (a)	Using $F = ma$:			
	$2400\mathbf{i} - 4800t\mathbf{j} = 800\mathbf{a}$	M1		
	$\mathbf{a} = 3\mathbf{i} - 6t\mathbf{j}$	A1	2	
	_			
(b)	$\mathbf{v} = \int \mathbf{a} \mathrm{d}t$	M1		
	$=3t\mathbf{i}-3t^2\mathbf{i}+\mathbf{c}$	A1		Condone no '+ \mathbf{c} '
	When $t = 0$, $v = 6i + 30j$			
	$\therefore \mathbf{c} = 6\mathbf{i} + 30\mathbf{j}$	M1		Needs ' $+$ c' above
	$\therefore \mathbf{v} = (3t+6)\mathbf{i} + (30-3t^2)\mathbf{j}$	A1	4	AG
(c)	$\mathbf{r} = \int \mathbf{v} \mathrm{d}t$	M1		
	3			
	$=(\frac{3}{2}t^{2}+6t)\mathbf{i}+(30t-t^{3})\mathbf{j}+\mathbf{d}$	A1,A1		A1 i term, A1 j term; condone no '+ d'
	2			
	When $t = 0$ $\mathbf{r} = 2\mathbf{i} + 5\mathbf{j}$			
	$\therefore \mathbf{d} = 2\mathbf{i} + 5\mathbf{i}$	M1		
	: $\mathbf{r} = (-t^2 + 6t + 2)\mathbf{i} + (30t - t^3 + 5)\mathbf{j}$	A1	5	
	Total		11	

(Q3, June 2007)

5 (a)(i)	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = 6t - 6\cos 3t$	M1A1	2	M1 for at least one term correct
(ii)	When $t = \frac{\pi}{3}$, $a = 6 \times \frac{\pi}{3} - 6\cos(3, \frac{\pi}{3})$ = $2\pi + 6$	M1 A1	2	AG
(b)	$r = t^3 + \frac{2}{3}\cos 3t + 6t + c$	M1A1		M1 for 3 terms including $\cos 3t$ term Condone no '+ c'
	When $t = 0, r = 0 \therefore c = -\frac{2}{3}$	M1		
	:. $r = t^3 + \frac{2}{3}\cos 3t + 6t - \frac{2}{3}$	A1	4	
	Total		8	

(Q2, Jan 2008)

6 (a)	$\mathbf{v} = \frac{\mathrm{d}r}{\mathrm{d}t}$				
	$\mathbf{v} = (3t^2 - 6t)\mathbf{i} + (4 + 2t)\mathbf{j}$	M1A1	2		
(b)(i)	$\mathbf{a} = (6t - 6)\mathbf{i} + 2\mathbf{j}$	M1 A1ft			
	Using $\mathbf{F} = \mathbf{ma}$:	1111			
	$\mathbf{F} = (18t - 18)\mathbf{i} + 6\mathbf{j}$	A1ft	3		
(ii)	When $t = 3$, $\mathbf{F} = 36\mathbf{i} + 6\mathbf{j}$				
	Magnitude is $\sqrt{36^2 + 6^2}$	M1			
	= 36.5	A1ft	2	Accept $6\sqrt{37}$; ft from (b)(i)	
(c)	When F acts due north:				
	Component of \mathbf{F} in the i direction is 0	M1			
	18t - 18 = 0	A 1 C	2		
	t = 1	AIII	2	It from (b)(1)	4
	Total		9		PN

⁽Q4, Jan 2008)

7 (a)	du	M1 A1	2	
1 (a)	$a = \frac{dv}{1} = 12t + 4$	MIAI	2	
	dt			
(b)	Using $F = ma$,			
	Force = $3 \times (12t + 4)$	M1		
	When $t = 4$, force = 3 (12 × 4 + 4)			
	Force -156 N	Δ1	2	
	10100 = 100 N	711	4	
		3 4 1 4 1		
(c)	$r = 2t^3 + 2t^2 - 7t + c$	MIAI		
	When $t = 0, r = 5, \therefore c = 5$	M1		
	$r = 2t^3 + 2t^2 - 7t + 5$	A 1	4	SC2 if no '1 a' scon
	I - 2i + 2i - 1i + 3	AI	4	5C3 II IIO + c see II
	Total		8	

(Q1, June 2008)

PhysicsAndMathsTutor.com

8	$r = \int v \mathrm{d}t$	M1]
	$= t^4 + 4\cos 2t + 5t \ (+c)$	A1			
	When $t = 0$, $r = 0 \implies c = -4$ $r = t^4 + 4\cos 2t + 5t - 4$	M1 A1ft	4	Finding c correctly	PM
	Total	71111	4		

(Q1, Jan 2009)

					_
9 (a)	$\mathbf{v} = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}$	M1			
	$\left(\frac{1}{2}^{t}\right)$	A1		i terms	
	$\mathbf{v} = (e^2 - 8)\mathbf{i} + (2t - 6)\mathbf{j}$	A1	3	j terms	
				3	
(b)(i)	When $t = 3$, $v = -3.52i$	B1		Accept $(e^{\overline{2}} - 8)i$	
	Speed is 3.52 m s^{-1}	B1	2	3.5 does not give 2 nd B mark	
(;;)	Waat	D1	1		
(II)	West	DI	1		
(\mathbf{a})	$1 \frac{1}{2^{t}} \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	M1 A 1			
(C)	$\mathbf{a} = \frac{1}{2}\mathbf{e}^2 1 + 2\mathbf{j}$	MIAI			
	When $t = 3$ $a = \frac{1}{2}e^{\frac{3}{2}}i + 2i$ or $224i + 2i$	A1	3		
	1 + 2j or $2 + 2j$ or $2 + 2j$		-		
(d)	Using $\mathbf{F} = m\mathbf{a}$:	M1		Accept $\mathbf{F} = 7\mathbf{a}$	
	$F = 7(\frac{1}{2}e^{\frac{3}{2}}i + 2j)$				
	· Magnitude of force is				
	$7\left((\frac{1}{2}e^{\frac{3}{2}})^2+2^2\right)^2$	M1			
	F = 21.025				
	F = 21.0	A1	3	Accept 21	PM
	Total		12		

(Q3, Jan 2009)

x

х

10 (a)	$\mathbf{a} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = (3t^2 - 15)\mathbf{i} + (6 - 2t)\mathbf{j}$	M1A1 A1	3	A1 (i terms) A1 (j terms)
(b)(i)	Using $\mathbf{F} = m\mathbf{a}$:			
	Force = $4 \times \{ (3t^2 - 15)\mathbf{i} + (6 - 2t)\mathbf{j} \}$	M1		
	$= (12t^2 - 60)\mathbf{i} + (24 - 8t)\mathbf{j}$	A1	2	AG
(ii)	When $t = 2$, force $= -12\mathbf{i} + 8\mathbf{j}$	M1A1		
	Magnitude of force = $\sqrt{12^2 + 8^2}$ N	M1		
	= 14.4 (N)	A1	4	
	Total		9	

(Q1, June 2009)

11 (a)	$\mathbf{r} = \int \mathbf{v} \mathrm{d}t$	M1		M1 for at least one term correct
	$= (t^4 - 6t^2 + 3t)\mathbf{i} + 5t\mathbf{j} + 4t^2\mathbf{k} + \mathbf{c}$	A1m1		m1 for $+ \mathbf{c}$
	When $t=0$, $\mathbf{r}=-5\mathbf{i}+6\mathbf{k}$ \therefore $\mathbf{c}=-5\mathbf{i}+6\mathbf{k}$ \therefore $\mathbf{r}=(t^4-6t^2+3t-5)\mathbf{i}+5t\mathbf{j}+(6+4t^2)\mathbf{k}$	A1	4	
(b)	$\mathbf{a} = (12t^2 - 12)\mathbf{i} + 8\mathbf{k}$	M1A1	2	M1 for either component
(c)	Magnitude is $\left\{ \left(12t^2 - 12 \right)^2 + 64 \right\}^{\frac{1}{2}}$	M1 A1F	2	
(d)	Magnitude is a minimum when $12t^2 - 12$	M1		M1 for correct differentiation of correct expression in (c)
	is zero ie when $t = 1$	A1	2	
(e)	Minimum acceleration is 8			
	Using $F = ma$,	M1		<i>a</i> could be a vector
	$F=7 \times 8 = 56$	A1	2	CAO
	Total		12	

(Q4, Jan 2010)

PMT

12	$v = \frac{\mathrm{d}s}{\mathrm{d}t}$	M1		M1 for either $\frac{ds}{dt}$ or 1 of 2 terms correct
				(ignore signs)
	$= 10t - 12 \sin 4t$	A1A1	3	
	Total		3	

_

(Q1, June 2010)

13 (a)	Using $\mathbf{F} = m\mathbf{a}$,			
	$400\cos\frac{\pi}{2} t \mathbf{i} + 600t^2 \mathbf{j} = 200 \mathbf{a}$	M1		
	$\mathbf{a} = 2\cos\frac{\pi}{2} t\mathbf{i} + 3t^2\mathbf{j}$	A1	2	
(b)	$\mathbf{v} = \int a \mathrm{d}t$	M1		M1 for either $\int a dt$ or 1 of 2 terms correct
	$=\frac{4}{\pi}\sin\frac{\pi}{2} t\mathbf{i} + t^3\mathbf{j} + \mathbf{c}$	A1m1		m1 for $+ \mathbf{c}$
	When $t = 4$, $\mathbf{r} = -3\mathbf{i} + 56\mathbf{j}$, 64 $\mathbf{j} + \mathbf{c} = -3\mathbf{i} + 56\mathbf{j}$	m1		
	$\therefore \mathbf{c} = -3\mathbf{i} - 8\mathbf{j}$ $\therefore \mathbf{v} = (\frac{4}{\pi}\sin\frac{\pi}{2}t - 3)\mathbf{i} + (t^3 - 8)\mathbf{j}$	A1	5	Do not accept $\frac{2}{\frac{\pi}{2}}$ Accept 1.27 for $\frac{4}{\pi}$
(c)	When particle is moving due west, northerly component is zero $\therefore t^3 - 8 = 0$ t = 2	M1 A1√ A1	3	
(d)	When $t = 2$, $\mathbf{v} = -3\mathbf{i} + 0\mathbf{j}$ Speed of particle is 3 m s ⁻¹	B1√ B1	2	B1 for change -3 to $+3$
	Speed of particle is 5 in 8	DI	2	51 for enange -5 to ± 5
	Total		12	

⁽Q4, June 2010) PMT

14 (a)	$\mathbf{r} = \int v dt$ = $(4t + t^3)\mathbf{i} + (12t - 4t^2)\mathbf{j} + \mathbf{c}$	M1A1		M1 either i or j term correct. Condone no c
	When $t = 0$, $r = 5i - 7j$ c = 5i - 7j	M1		Any attempt at c
	$\mathbf{r} = (5 + 4t + t^3)\mathbf{i} + (-7 + 12t - 4t^2)\mathbf{j}$	A1	4	
(b)	$\mathbf{a} = \frac{\mathrm{d}\nu}{\mathrm{d}t}$			
	$\mathbf{a} = 6t \mathbf{i} - 8 \mathbf{j}$	M1A1	2	M1 either term correct
(c)	Using $\mathbf{F} = m\mathbf{a}$ $\mathbf{F} = 2(6t \mathbf{i} - 8 \mathbf{j})$	M1		Or: using $\mathbf{F} = m\mathbf{a}$ $\mathbf{F} = 2(6t \mathbf{i} - 8 \mathbf{j})$
	$= 12t \mathbf{i} - 16 \mathbf{j}$ $\therefore \text{ Magnitude of force is}$	A1		When $t = 1$, F = 12 i - 16 j
	$(144t^2 + 256)^{\frac{1}{2}}$ when $t = 1$	M1		Magnitude of force is $(144 + 256)^{\frac{1}{2}}$
	= 20 N	A1	4	= 20 N
	Total		10	

(Q1, Jan 2011)

$\mathbf{a} = -8e^{-2i}\mathbf{i} + (6-6t)\mathbf{j}$ M1 A1 A1 A1M1: Differentiating with either of the two components correct. Do not need to see \mathbf{i} or \mathbf{j} . A1: Correct \mathbf{j} component. A1: Correct expression.(ii)Magnitude of \mathbf{F} is $((-40)^2 + (30)^2)^{\frac{1}{2}}$ M1M1: Finding magnitude from two non- zero terms. Must add terms and square root. Condone $[(40)^2 + (30)^2)^{\frac{1}{2}}$ (c)When \mathbf{F} acts due west, \mathbf{j} component is zero $30 - 30t = 0$ $t = 1$ M12(d) $\mathbf{r} = -2e^{-2t}\mathbf{i} + (3t^2 - t^3)\mathbf{j} + \mathbf{c}$ M1 A1 A12(d) $\mathbf{r} = -2e^{-2t}\mathbf{i} + (3t^2 - t^3)\mathbf{j} + \mathbf{c}$ M1 A1 A1M1: Integration with either of the two component. A1: Correct \mathbf{i} component. A1: Correct \mathbf{i} component. A1: Correct \mathbf{i} component. A1: Correct \mathbf{j} component. A1: Corre	15 (a)	$\mathbf{a} = \frac{\mathrm{d}v}{\mathrm{d}t}$			
(b)(i)Using $\mathbf{F} = m\mathbf{a}$ $\mathbf{F} = 5 \times \{-8e^{-2t}\mathbf{i} + (6-6t)\mathbf{j}\}$ M1 A1M1 A1M1: Multiplying their acceleration by 5, even if not a vector. A1: Correct expression.(ii)Magnitude of \mathbf{F} is $\{(-40)^2 + (30)^2\}^{\frac{1}{2}}$ M1M1: Finding magnitude from two non- zero terms. Must add terms and square root. Condone $\{(40)^2 + (30)^2\}^{\frac{1}{2}}$ (iii)Magnitude of \mathbf{F} is $\{(-40)^2 + (30)^2\}^{\frac{1}{2}}$ M1M1: Finding magnitude from two non- zero terms. Must add terms and square root. Condone $\{(40)^2 + (30)^2\}^{\frac{1}{2}}$ (c)When \mathbf{F} acts due west, \mathbf{j} component is zero $30 - 30t = 0$ $t = 1$ M12(d) $\mathbf{r} = -2e^{-2t}\mathbf{i} + (3t^2 - t^3)\mathbf{j} + \mathbf{c}$ M1 A1 A1M1: Putting \mathbf{j} component equal to zero. A1: Correct time.(d) $\mathbf{r} = -2e^{-2t}\mathbf{i} + (3t^2 - t^3)\mathbf{j} + \mathbf{c}$ M1 A1 A1M1: Integration with either of the two components correct. Do not need to see \mathbf{i} or \mathbf{j} , A1: Correct \mathbf{i} component. A1: Correct \mathbf{i} component. A1: Correct \mathbf{j} component. Condone lack of $\mathbf{i} + \mathbf{c}$		$\mathbf{a} = -8\mathrm{e}^{-2t}\mathbf{i} + (6-6t)\mathbf{j}$	M1 A1 A1	3	M1: Differentiating with either of the two components correct. Do not need to see i or j.A1: Correct i component.A1: Correct j component.
(ii)Magnitude of F is $\{(-40)^2 + (30)^2\}^{\frac{1}{2}}$ M1M1: Finding magnitude from two non-zero terms. Must add terms and square root. Condone $\{(40)^2 + (30)^2\}^{\frac{1}{2}}$ $= 50$ A12A1: Correct answer only. In this part, condone lack of negative signs in expression for force in (b) (i).(c)When F acts due west, j component is zero $30 - 30t = 0$ 	(b)(i)	Using $\mathbf{F} = m\mathbf{a}$ $\mathbf{F} = 5 \times \{-8e^{-2t}\mathbf{i} + (6-6t)\mathbf{j}\}$ $= -40e^{-2t}\mathbf{i} + (30-30t)\mathbf{j}$	M1 A1	2	M1: Multiplying their acceleration by 5, even if not a vector. A1: Correct expression.
= 50A12A1: Correct answer only. In this part, condone lack of negative signs in expression for force in (b) (i).(c)When F acts due west, j component is zero $30-30t = 0$ $t = 1$ M1M1: Putting j component equal to zero.(d) $\mathbf{r} = -2e^{-2t}\mathbf{i} + (3t^2 - t^3)\mathbf{j} + \mathbf{c}$ M1 A1 A1M1: Integration with either of the two components correct. Do not need to see i or j. A1: Correct i component. A1: Correct j component. Condone lack of + cWhen $t = 0$, $\mathbf{r} = 6\mathbf{i} + 5\mathbf{j} \therefore \mathbf{c} = 8\mathbf{i} + 5\mathbf{j}$ dM1 A1dM1: Finding c using $6\mathbf{i} + 5\mathbf{j}$ and $e^0 = 1$. \therefore $\mathbf{r} = (8 - 2e^{-2t})\mathbf{i} + (5 + 3t^2 - t^3)\mathbf{j}$ A15A1: Correct position vector.	(ii)	Magnitude of F is $\{(-40)^2 + (30)^2\}^{\frac{1}{2}}$	M1		M1: Finding magnitude from two non- zero terms. Must add terms and square root. Condone $\{(40)^2 + (30)^2\}^{\frac{1}{2}}$
(c)When F acts due west, j component is zero $30-30t = 0$ $t = 1$ M1M1M1: Putting j component equal to zero.(d) $\mathbf{r} = -2e^{-2t}\mathbf{i} + (3t^2 - t^3)\mathbf{j} + \mathbf{c}$ M1A12A1: Correct time.(d) $\mathbf{r} = -2e^{-2t}\mathbf{i} + (3t^2 - t^3)\mathbf{j} + \mathbf{c}$ M1 A1 A1M1: Integration with either of the two components correct. Do not need to see i 		= 50	A1	2	A1: Correct answer only. In this part, condone lack of negative signs in expression for force in (b) (i).
$t = 1$ A12A1: Correct time. (\mathbf{d}) $\mathbf{r} = -2e^{-2t}\mathbf{i} + (3t^2 - t^3)\mathbf{j} + \mathbf{c}$ M1 A1 A1 A1M1: Integration with either of the two components correct. Do not need to see \mathbf{i} or \mathbf{j} . A1: Correct \mathbf{i} component. 	(c)	When F acts due west, j component is zero 30 - 30t = 0	M1		M1: Putting j component equal to zero.
(d) $\mathbf{r} = -2e^{-2t}\mathbf{i} + (3t^2 - t^3)\mathbf{j} + \mathbf{c}$ M1 A1 A1 A1M1: Integration with either of the two components correct. Do not need to see \mathbf{i} or \mathbf{j} . A1: Correct \mathbf{i} component. 		t = 1	A1	2	A1: Correct time.
When $t = 0$, $\mathbf{r} = 6\mathbf{i} + 5\mathbf{j}$ \therefore $\mathbf{c} = 8\mathbf{i} + 5\mathbf{j}$ dM1 dM1: Finding \mathbf{c} using $6\mathbf{i} + 5\mathbf{j}$ and $e^0 = 1$. \therefore $\mathbf{r} = (8 - 2e^{-2t})\mathbf{i} + (5 + 3t^2 - t^3)\mathbf{j}$ A1 5 A1: Correct position vector.	(d)	$\mathbf{r} = -2\mathbf{e}^{-2t}\mathbf{i} + (3t^2 - t^3)\mathbf{j} + \mathbf{c}$	M1 A1 A1		 M1: Integration with either of the two components correct. Do not need to see i or j. A1: Correct i component. A1: Correct j component. Condone lack of + c
$\therefore \mathbf{r} = (8 - 2e^{-2t})\mathbf{i} + (5 + 3t^2 - t^3)\mathbf{j} \qquad A1 \qquad 5 \qquad A1: \text{ Correct position vector.}$		When $t = 0$, $\mathbf{r} = 6\mathbf{i} + 5\mathbf{j}$ \therefore $\mathbf{c} = 8\mathbf{i} + 5\mathbf{j}$	dM1		dM1: Finding c using $6\mathbf{i} + 5\mathbf{j}$ and $e^0 = 1$.
		:. $\mathbf{r} = (8 - 2e^{-2t})\mathbf{i} + (5 + 3t^2 - t^3)\mathbf{j}$	A1	5	A1: Correct position vector.
Total 14		Total		14	

(Q3, June 2011)

	$_{2} \times 23$
$= 65.3 \text{ m s}^{-1}$	

_

PhysicsAndMathsTutor.com

	Total		8	
16 (a)	using $\mathbf{F} = m\mathbf{a}$: $\mathbf{a} = (6t - 1.2 t^{2}) \mathbf{i} + 2 e^{-2t} \mathbf{j}$	M1 A1	2	ie dividing by 50
(b)	$\mathbf{v} = \int \mathbf{a} \mathrm{d} \mathbf{t}$			
	= $(3 t^2 - 0.4 t^3) \mathbf{i} - e^{-2t} \mathbf{j} + \mathbf{c}$	M1A1		condone lack of + c; M1 one term correct
	when $t = 0$, $\mathbf{r} = 7$ $\mathbf{i} - 4$ \mathbf{j}			2 - 2 + -2t + -2
	$\mathbf{c} = 7 \mathbf{i} - 3 \mathbf{j}$ $\mathbf{v} = (7 + 3 t^2 - 0.4 t^3) \mathbf{i} - (3 + e^{-2t}) \mathbf{j}$	mlAl	4	It from ke ⁻²⁴ in (b); just adding $7i - 4j$, m0 accept unsimplified. CAO
(c)	when $t = 1$, $\mathbf{v} = 9.6 \mathbf{i} - 3.135 \mathbf{j}$	M1A1		ft from (b)
	speed = $\sqrt{9.6^2 + 3.135^2}$	ml		× ′
	$= 10.1 \text{ ms}^{-1}$	A1	4	ft from (b)
	Total		10	

A1

2

CAO

(Q2, Jan 2012)

17 (a)(i)	$a = \frac{dv}{dt}$			
	$= 12t + 8e^{-4t} m s^{-2}$	M1A1	2	M1 for either term correct
(ii)	When $t = 0.5$, $a = 6 + 8 \times e^{-2}$ - 7.08 m s ⁻²	m1 4 1	2	Condone 7.07
(h)	= 7.00 m/s	AI	2	SC1 for 7.1 with no working
	$F = 4 \times 7.08$ $= 28.3 \text{ N}$	B1ft	1	Ft from value awarded A1
(c)	$r = \int v \mathrm{d}t$	M1		At least two terms correct
	$= 2t^3 + \frac{1}{2}e^{-4t} + 8t + c$	A1		Does not need $+c$
	When $t = 0, r = 0 \to c = -\frac{1}{2}$	m1		Does not need $c = -\frac{1}{2}$
	$r = 2t^3 + \frac{1}{2}e^{-4t} + 8t - \frac{1}{2}$	A1	4	Need <i>r</i> , <i>s</i> (or words)
	Total		9	

(Q2, June 2012)

		Total		9		1
	(e)	Acceleration is towards centre of circle (or origin)	E1	1		
		k = -9	B2	2	B1 for 9	
	(d)	$\mathbf{a} = -9 (4 \cos 3t \mathbf{i} - 4 \sin 3t \mathbf{j})$				
		$\mathbf{a} = -36\cos 3t\mathbf{i} + 36\sin 3t\mathbf{j}$	M1A1	2	M1 for either term correct	
	(c)	$\mathbf{a} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}$				
		$\mathbf{v} = -12\sin 3t\mathbf{i} - 12\cos 3t\mathbf{j}$	M1A1	2	M1 for either term correct	
	(b)	$\mathbf{v} = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}$				
		origin				
		= 4 which is a constant	A1	2		Ы
		$\{(4\cos 3t)^2 + (4\sin 3t)^2\}^{\frac{1}{2}}$	M1			
18	(a)	Distance of particle from the origin is				

(Q4, June 2012)

19 (a)	$\mathbf{a} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}$	M1		
	$= -4\pi \sin\left(\frac{\pi}{3}t\right)\mathbf{i} - 18t\mathbf{j}$	A1	2	M1 for either term correct Accept $-12 \times \frac{\pi}{3} \sin\left(\frac{\pi}{3}t\right) \mathbf{i} - 18t\mathbf{j}$ condone no \mathbf{i} in (a)
(b)(i)	Using $\mathbf{F} = m\mathbf{a}$:			
	$\mathbf{F} = 4 \times \left[-4\pi \sin\left(\frac{\pi}{3}t\right) \mathbf{i} - 18t\mathbf{j} \right]$	M1		Or either term correct
	$\mathbf{F} = -16\pi \sin\left(\frac{\pi}{3}t\right)\mathbf{i} - 72t\mathbf{j}$	A1	2	
(ii)	When $t = 3$, $\mathbf{F} = 4 \times [-4\pi \sin(\pi)\mathbf{i} - 54\mathbf{j}]$			
	= - 216 j Magnitude is 216	B1 B1ft	2	ft finding magnitude of their F
(c)	$\mathbf{r} = \int \mathbf{v} \mathrm{d}t$	M1		either term correct
	$= \frac{36}{\pi} \sin\left(\frac{\pi}{3}t\right) \mathbf{i} - 3t^3 \mathbf{j} + \mathbf{c}$	A1		No need for c (otherwise cao) Condone $\frac{12}{\left(\frac{\pi}{3}\right)}$
	When $t = 3$, $\mathbf{r} = 4\mathbf{i} - 2\mathbf{j}$	M1		
	c = 4i + 79j	A1		
	$\mathbf{r} = \left\{\frac{36}{\pi}\sin\left(\frac{\pi}{3}t\right) + 4\right\}\mathbf{i} + \{79 - 3t^3\}\mathbf{j}$	A1	5	cao
	Total		11	(Q2, Jan 2013)

_

When t = 2, a = 96

B1

	Using $F = ma$			-
	$F = 3 \times 96$	M1		
20 (a)	= 288 N	A1 M1	4	
20 (a)	$v = \frac{1}{\mathrm{d}t}$ Total	IVI I	6	
	$K \equiv \frac{24}{2} t^2 \times 52 \times 7^2$	A1	2	
(b)	$a = \frac{\overline{d}v^{1274} J}{\overline{1270} J}$	A1	2	
(b)	dt = 48t Change in PE: $mah = 52 \times 9.8 \times 8$	B1		
	= 4076.8	A1		
	When $t = 2, a = 96$	B1		
	Carol's KE when she reaches the net			
	= 1274 + 4076.8 J = 5350.8 J	M1		
	$\frac{1}{2} = 5350 \text{ J}^{50}$		3	
	Total	711	6	
	5350.8		v	(01 luna 2012)
	$KE = \frac{1}{2} \times 52 \times 7^2 \qquad \frac{1}{2} \times 52$			(Q1, June 2013)
	$= 14 = 34374 \text{mJ} \text{s}^{-1}$	A1	2	
	= 14=3 1/2780 ¹ J	A1	3	
	Total	MI	8	
21 (a)	$V = \int_{a}^{b} dt$ mgn = 52 × 9.8 × 8 - 4076 8			
	$= (20t^2 + t^3)\mathbf{i} - 5e^{-4t}\mathbf{i} + \mathbf{c}$	M1A1		M1 for either term correct
	Carol's KE when she reaches the net			Condone no '+ c '
	$\underline{W}h274 \neq 4076.8 \text{ J} = 5350.8 \text{ J}$			
	$\underline{6}\mathbf{i}_{53}56^{-1}\mathbf{j}\mathbf{j} = 21\mathbf{i} - 5\mathbf{e}^{-4}\mathbf{j} + \mathbf{c}$	Mi	3	Finding '+ c'; not using $\mathbf{c} = 6\mathbf{i} - 5e^{-4}\mathbf{j}$
	c = -15i	A1		
	$\mathbf{v} = (20t^2 + t^3 - 15)\mathbf{i} - 5\mathbf{i} - 5\mathbf{i} - 5\mathbf{i}$	A1	5	
	$\frac{1}{2} \times 52^{\circ}$			
(b)	$Where 4579_{m} = -15i - 5j$	M1		
	$= 14.3 \text{ m s}^{-1}$	A1	3	
	Speed is $\sqrt{15^2 + 5^2}$ Total	M1	8	
	$v = \int a dt$ = 15.8 m s ⁻¹	A1	3	Accept $5\sqrt{10}$
	$\int (20)^2 + 3^3 = 5 - 4t = 10$	M1A1	5	M1 for either term correct
	$= (20t + t)\mathbf{l} - 5e \mathbf{j} + \mathbf{c}$ Total	MIAI	8	Condone no $+c'$
	When $t = 1$,			(03 /upo 2012)
	$6\mathbf{i} - 5\mathbf{e}^{-4}\mathbf{j} = 21\mathbf{i} - 5\mathbf{e}^{-4}\mathbf{j} + \mathbf{c}$	M1		Finding '+ c'; not using $\mathbf{c} = 6\mathbf{i} - 5\mathbf{e}^4\mathbf{j}$
	c = -15i	A1		
	$\mathbf{v} = (20t^2 + t^3 - 15)\mathbf{i} - 5e^{-4t}\mathbf{i}$			
(b)	When $t = 0$, $v = -15i - 5j$			
	~			
	Speed is $15^2 + 5^2$			
	$= 15.8 \text{ m s}^{-1}$			5 10
	T-4-1		ø	
	1 otal		o	