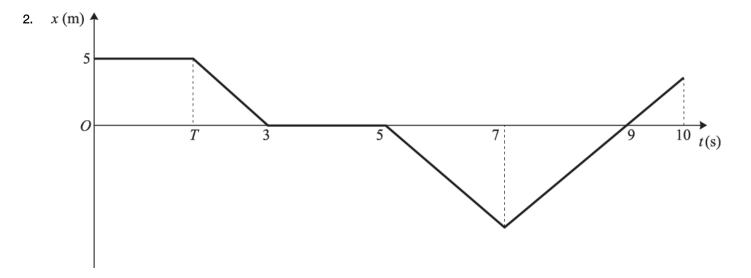


The diagram shows the (*t*, *v*) graph of a car moving along a straight road, where $v \text{ m s}^{-1}$ is the velocity of the car at time *t* s after it passes through the point *A*. The car passes through *A* with velocity 18 m s⁻¹, and moves with constant acceleration 2.4 m s⁻² until *t* = 5. The car subsequently moves with constant velocity until it is 300 m from *A*. When the car is more than 300 m from *A*, it has constant deceleration 6 m s⁻², until it comes to rest.

i. Find the greatest speed of the car.


1.

[2]

[5]

- ii. Calculate the value of *t* for the instant when the car begins to decelerate.
- iii. Calculate the distance from *A* of the car when it is at rest.

[3]

A particle *P* can move in a straight line on a horizontal surface. At time *t* seconds the displacement of *P* from a fixed point *A* on the line is *x* m. The diagram shows the (*t*, *x*) graph for *P*. In the interval $0 \le t \le 10$, either the speed of *P* is 4 ms⁻¹, or *P* is at rest.

i.	Show by calculation that $T = 1.75$.	
ii.	State the velocity of <i>P</i> when	[2]
	a. <i>t</i> = 2,	[1]
	b. <i>t</i> = 8,	
		[1]
	c. <i>t</i> = 9.	[1]
iii.	Calculate the distance travelled by <i>P</i> in the interval $0 \le t \le 10$.	
		[3]
For t	> 10, the displacement of <i>P</i> from <i>A</i> is given by $x = 20t - t^2 - 96$.	
iv.	Calculate the value of t, where $t > 10$, for which the speed of P is 4 ms ⁻¹ .	
		[4]

- 3. A particle *P* is projected vertically downwards with initial speed 3.5 ms⁻¹ from a point *A* which is 5 m above horizontal ground.
 - i. Find the speed of *P* immediately before it strikes the ground.

[2]

After striking the ground, P rebounds and moves vertically upwards and 0.87 s after leaving the ground P passes through A.

ii. Calculate the speed of *P* immediately after it leaves the ground.

It is given that the mass of P is 0.2 kg.

- iii. Calculate the change in the momentum of *P* as a result of its collision with the ground.
- [2]

[3]

- 4. A small ball is projected vertically upwards with speed 18 m s⁻¹ from a point O on the ground. At the same instant a small object is released from rest at a point 27 m vertically above O.
 - (i) Verify that the ball and the object collide 1.5 s after they are set in motion. [4]
 - (ii) Find the velocities of the ball and the object immediately before they collide. [3]

The ball and the object have equal mass. When the ball and the object collide, they coalesce.

(iii) Find the time after their collision when they strike the ground at *O*. [5]

END OF QUESTION paper

Mark scheme

Que	stion	Answer/Indicative content	Marks	Part marks and guidance
1	i	$v = 18 + 2.4 \times 5$	M1	v = u + at
	i	<i>ν</i> = 30	A1	
	ii	Distance while accelerating = $(18 + 30) \times 5/2$	B1	Or 30 × 5 – (30 – 18) × 5/2 etc = 120, or 45 + 75. Numerical.
	ii	Distance at constant speed = $30(t-5)$	B1	Tolerate 30 <i>t</i> . Algebraic.
	ii		M1	Adds their areas to get 300
	ii	$30(t-5) + (18+30) \times 5/2 = 300$	A1	30 <i>T</i> = 300 – 120, 30 <i>t</i> + 45 + 75 = 300, etc
	ii	<i>t</i> = 11	A1	
	ii	OR		
	ii	Distance while accelerating = $(18 + 30) \times 5/2$ (= 120)	B1	Or $30 \times 5 - (30 - 18) \times 5/2$ etc = 120, or 45 + 75. Numerical.
	ii	Distance at constant speed = $300 - cv(120)$	M1	Subtracts their area from 300
	ii	Time at constant speed = $\frac{(300 - cv(120))}{30}$	me at constant speed = $\frac{(300 - cv(120))}{30}$ B1 Equivalent to "d algebraic"	
	ii	Time at constant speed = 6	A1	
	ii	<i>t</i> = 11	A1	
	ii	OR		
	ii	Distance = 30 <i>t</i>	B1	Rectangle, comprising 300 + area of "missing triangle"
	ii	Distance = (30 – 18) × 5/2	B1	"Missing triangle", to be removed
	ii	$30t - (30 - 18) \times 5/2 = 300$	M1A1	Subtracts their areas to get 300
	ii	<i>t</i> = 11	A1	
	ii	OR		
	ii	Distance while accelerating = $(18 + 30) \times 5/2$	B1	120
	ii	Distance at constant speed = $30(t-5)$	B1	May be implied. Tolerate 30 <i>t</i> . Algebraic.
	ii	Distance at constant speed = $300 - 120 = 30(t - 5)$	M1A1	<i>OR</i> 180 = 30 <i>t</i> M1, <i>t</i> = 6 A1
	ii	<i>t</i> = 11	A1	
	ii	Splitting area horizointally		

I	1	1	Constant Acceleration and Graphical Representation					
		ii	Distance = 18 <i>t</i>	B1	Lower portion of area			
		ii	Distance = $(t + [t - 5]) \times (30 - 18)/2$	B1	Upper portion of area			
		ii	$18t + (t + [t - 5]) \times (30 - 18)/2 = 300$	M1A1	30 <i>t</i> - 30 = 300			
		ii	<i>t</i> = 11	A1				
		≣	$S = 30^2/(2 \times (\pm 6))$	M1	$0^2 = 30^2 \pm 2 \times 6S$, with candidate's ν (i)			
		iii	<i>S</i> = 75	A1				
		iii	Distance = 375 m	A1ft	300 + cv(75)			
		iii	OR	M1	Accept $T = 5$ if no working or from 30/–6, with candidate's $v(i)$			
		iii	T = 30/6 and $S = 307/2$					
		iii	<i>S</i> = 75	A1				
					300 + cv(75)			
					Examiner's Comments			
			Distance = 375 m	A1ft	Many fully correct solutions were seen. The most frequent error was not realising in part (ii) that 300 m was the entire journey distance while both accelerating and moving with constant speed. Thus "300/30 = 10, 10 + 5 = 15 seconds" was the most common mistake seen. Very many candidates expressed their work in a very informal way, their solutions consisting predominantly of numbers (120, 180, 6, 11) without much explanation of what they meant. Candidates could directly find in part (iii) the distance while decelerating (from $0^2 = 30^2 - 2 \times 6s$), and so those who first calculated a time while decelerating needed to use that time to find a			
					distance before becoming eligible for any mark.			
			Total	10				
2		i	$5/(T-3) = -4 \ OR \ 5/(3-T) = 4$	M1	Accept verification, $4 \times (3 - 1.75)$ M1			
		i	<i>T</i> = 1.75	A1	= 5 A1 <i>OR</i> 5/(3 – 1.75) M1 = 4 A1			
		ii	(a) -4 ms ⁻¹	B1				
		ii	(b) 4 ms ⁻¹	B1				
		ii	(c) 4 ms ⁻¹	B1				
		iii	2 × (–)4, 2 × 4, (1 ×)4	M1*	Calculates any one unknown distance	Allow if only one		

	-	1		Const	ant Acceleration and Graphical Representation	
		III	<i>d</i> = (-)5 + (-)8+ 8 + 4	D*M1	Adds 5 and "3 other" distances or –5 and "3 other" displacements	calc. correct Note $t = 5$ to $t = 9$, t = 5 to $t =10 etc,may beone term$
		iii	<i>d</i> = 25 m	A1	Correctly comes from $4 \times (1.25 + 4 + 1)$ 3/3	
		iv	$v = d(20t - t^2 - 96)/dt$	M1*	Differentiates x, accept $20 - t$ as "differentiation"	
		iv	<i>v</i> = 20 – 2 <i>t</i>	A1		
		iv	20 - 2t = -4	D*M1	20 - 2t + c = -4 is DM0	
		iv	t = 12 (ignore any solutions less than 10)	A1	Only from $20 - 2t = -4$. This answer can arise fortuitously from solving $20t - t^2 - 96 = 0$. Examiner's Comments In recent examinations, a (t, v) graph has been presented to candidates. It was clear that a minority of candidates used methods inappropriate to a (t, x) diagram. Others wrongly used constant acceleration formulae, in a problem where changes of velocity are instantaneous. Only the best candidates were able to solve fully, as only they realised that a speed of 4 m s ⁻¹ was consistent with $v = -4$.	SC Verifying that t = 12 gives v = -4 can gain final M1A1 (A special case of trial and refinement)
			Total	12		
3		i	$v^2 = 3.5^2 + 2g \times 5$	M1	Uses $v^2 = 3.5^2 + -2g_5$	Accept -3.5^2 for $(-3.5)^2$ etc
		i	$\nu = 10.5 \text{ ms}^{-1}$	A1	Examiner's Comments Was almost always answered correctly.	
		ii		M1	$+/-5 = 0.87u +/-g 0.87^{2}/2$	May come from $s = vt$ $- gt^2/2$
		11	$5 = 0.87u - g \times 0.87^2 / 2$ $u = 10.0 \text{ ms}^{-1}$	A1 A1	Examiner's Comments This part was almost always answered correctly, save for a significant minority of candidates who	

			Constant Acceleration and Graphical Representation					
						had the wrong sign before unusual feature was the h candidates who rearrange equation into a form which	ed the standard <i>suvat</i>	
		iii	Change = $0.2 \times 10.5 + 0.2 \times 10$		M1	Or +/- 0.2(Ans(i) +/- Ans(jii))	
						It is OK get -4.1 from correct work		
					Examiner's Comments			
		≣	Change = 4.1(0) kg ms ⁻¹		A1	Was nearly always answer magnitudes of the momen lift-off. A minority of candi speed of 3.5 m s ⁻¹ in their	ntum on landing and on dates used the initial	
			Total		7			
4		Ĩ	Object fall = $9.8 \times 1.5^2 / 2$ Ball rise = $18 \times 1.5 - 9.8 \times 1.5^2 / 2$ Distance = $11.025 + 15.975$ Distance = 27 m OR Distance fallen = $9.8t^2/2$ Distance risen = $18t - 9.8t^2 / 2$	AG	B1 B1 A1 [4] B1 B1 M1	 11.025 m 15.975 m Appropriate signs and full accuracy Solves total of distances equation Examiner's Comments 	SC 18x1.5 = 27 B1 only but 9.8 x $1.5^2/2+18 x$ 1.5 - 9.8 x $1.5^2/2=27$ B1B1M1A1 9.8 $t^2/2$ without the context of "distance fallen" is B0. Similarly for $18t - 9.8t^2/2$	
			9.8t/2 + 18t - 9.8t/2 = 27 t = 1.5	AG	A1	In part (i), candidates were "verify" t =1.5 which indica distances moved by the c be calculated. The next st that these distances adde 27 m initial gap. This stag exact arithmetic; the use o lead only to the conclusio	ated that finding the object and ball should first age was to demonstrate ad together equalled the e had to be done using of rounded figures could	

Constant Acceleration and Graphical Representation

			up and solved and equation in t containing to squared terms (which subsequently cancelle so showed that t =1.5.	wo
ii	Object vel (=9.8 x 1.5) = 14.7 m s ⁻¹ (down) Ball vel =+/-(18 - 9.8 x 1.5) Ball vel = 3.3 (upwards)	B1 M1 A1	Accept -14.7 m s^{-1} Candidate may find objectMust be a difference expressionvelocity an ball velocit3.3 if $\nu=18$ or -3.3 if $\nu=$ be quoted here for 3 marks to b	id y in nust
		[3]	Examiner's Comments Part (ii) was done well.	
	14.7 m -3.3 m = 2 mu u = 5.7 15.975 = 5.7 t + 9.8 t /2 Solve 4.9 t + 5.7 t - 15.975 = 0	M1 A1 M1*	Momentum conservation; after mass = $2xbefore$ massDisregard signsMust mass = $2xbefore$ mass $v^2 = 5.7^2 + 2x9.8x15.7^2 + 2x9.8x15.7^2$	975 7 + ate),
	<i>t</i> = 1.32 s	A1	Answer t = 1.32 s	=
		[5]	Examiner's Comments	
			Part (iii) was often accompanied by diagrams showed a horizontal collision. The momentu equation proved awkward, with uncertainty a the direction of motion signs, both before an coalescence, or not having the "after" mass doubled.	m about

	Total	12		