| 1. | A particle <i>P</i> moves along a straight line. | | |----|--|-----| | | At time t seconds, the velocity $v \text{m s}^{-1}$ of P is modelled as | | | | $v = 10t - t^2 - k \qquad t \geqslant 0$ | | | | where k is a constant. | | | | (a) Find the acceleration of P at time t seconds. | (2) | | | The particle P is instantaneously at rest when $t = 6$ | | | | (b) Find the other value of t when P is instantaneously at rest. | (4) | | | (c) Find the total distance travelled by P in the interval $0 \le t \le 6$ | (4) | **2.** A fixed point *O* lies on a straight line. A particle *P* moves along the straight line. At time t seconds, $t \ge 0$, the distance, s metres, of P from O is given by $$s = \frac{1}{3}t^3 - \frac{5}{2}t^2 + 6t$$ (a) Find the acceleration of P at each of the times when P is at instantaneous rest. **(6)** (b) Find the total distance travelled by *P* in the interval $0 \le t \le 4$ **(3)** |
 | |------| | | | | | | | | | | | | | | | | | | **(1)** | 3. | In this question you must show all stages of your working. | |----|---| | | Solutions relying entirely on calculator technology are not acceptable. | A fixed point O lies on a straight line. A particle P moves along the straight line such that at time t seconds, $t \ge 0$, after passing through O, the velocity of P, v m s⁻¹, is modelled as $$v = 15 - t^2 - 2t$$ - (a) Verify that P comes to instantaneous rest when t = 3 - (b) Find the magnitude of the acceleration of P when t = 3 (3) - (c) Find the total distance travelled by P in the interval $0 \le t \le 4$ (4) | 4. | At time | t seconds, | a particle P | has v | velocity | \mathbf{v} m s ⁻¹ , | where | |----|---------|------------|--------------|-------|----------|----------------------------------|-------| | | | | | | | | | $\mathbf{v} = 3t^{\frac{1}{2}} \mathbf{i} - 2t \mathbf{j} \qquad t > 0$ (a) Find the acceleration of P at time t seconds, where t > 0 **(2)** (b) Find the value of t at the instant when P is moving in the direction of $\mathbf{i} - \mathbf{j}$ **(3)** At time t seconds, where t > 0, the position vector of P, relative to a fixed origin O, is \mathbf{r} metres. When t = 1, $\mathbf{r} = -\mathbf{j}$ (c) Find an expression for \mathbf{r} in terms of t. **(3)** (d) Find the exact distance of P from O at the instant when P is moving with speed $10\,\mathrm{m\,s^{-1}}$ **(6)** |
 | | |------|--|
 |
 |
 | 5. | [In this question, position vectors are given relative to a fixed origin.] | | |----|--|-----| | | At time t seconds, where $t > 0$, a particle P has velocity $\mathbf{v} \mathbf{m} \mathbf{s}^{-1}$ where | | | | $\mathbf{v} = 3t^2 \mathbf{i} - 6t^{\frac{1}{2}} \mathbf{j}$ | | | | (a) Find the speed of P at time $t = 2$ seconds. | (2) | | | (b) Find an expression, in terms of t , \mathbf{i} and \mathbf{j} , for the acceleration of P at time t seconds, where $t > 0$ | (2) | | | At time $t = 4$ seconds, the position vector of P is $(\mathbf{i} - 4\mathbf{j})$ m. | (2) | | | (c) Find the position vector of P at time $t = 1$ second. | | | | | (4) | 6. At time t seconds, where $t \ge 0$, a particle P has velocity vms | |--| |--| $$\mathbf{v} = (t^2 - 3t + 7)\mathbf{i} + (2t^2 - 3)\mathbf{j}$$ Find (a) the speed of P at time t = 0 (3) (b) the value of t when P is moving parallel to $(\mathbf{i} + \mathbf{j})$ **(2)** (c) the acceleration of P at time t seconds **(2)** (d) the value of t when the direction of the acceleration of P is perpendicular to \mathbf{i} **(2)**