1.	A particle <i>P</i> moves along a straight line.	
	At time t seconds, the velocity $v \text{m s}^{-1}$ of P is modelled as	
	$v = 10t - t^2 - k \qquad t \geqslant 0$	
	where k is a constant.	
	(a) Find the acceleration of P at time t seconds.	(2)
	The particle P is instantaneously at rest when $t = 6$	
	(b) Find the other value of t when P is instantaneously at rest.	(4)
	(c) Find the total distance travelled by P in the interval $0 \le t \le 6$	(4)

2. A fixed point *O* lies on a straight line.

A particle *P* moves along the straight line.

At time t seconds, $t \ge 0$, the distance, s metres, of P from O is given by

$$s = \frac{1}{3}t^3 - \frac{5}{2}t^2 + 6t$$

(a) Find the acceleration of P at each of the times when P is at instantaneous rest.

(6)

(b) Find the total distance travelled by *P* in the interval $0 \le t \le 4$

(3)

(1)

3.	In this question you must show all stages of your working.
	Solutions relying entirely on calculator technology are not acceptable.

A fixed point O lies on a straight line.

A particle P moves along the straight line such that at time t seconds, $t \ge 0$, after passing through O, the velocity of P, v m s⁻¹, is modelled as

$$v = 15 - t^2 - 2t$$

- (a) Verify that P comes to instantaneous rest when t = 3
- (b) Find the magnitude of the acceleration of P when t = 3 (3)
- (c) Find the total distance travelled by P in the interval $0 \le t \le 4$ (4)

4.	At time	t seconds,	a particle P	has v	velocity	\mathbf{v} m s ⁻¹ ,	where

 $\mathbf{v} = 3t^{\frac{1}{2}} \mathbf{i} - 2t \mathbf{j} \qquad t > 0$

(a) Find the acceleration of P at time t seconds, where t > 0

(2)

(b) Find the value of t at the instant when P is moving in the direction of $\mathbf{i} - \mathbf{j}$

(3)

At time t seconds, where t > 0, the position vector of P, relative to a fixed origin O, is \mathbf{r} metres.

When t = 1, $\mathbf{r} = -\mathbf{j}$

(c) Find an expression for \mathbf{r} in terms of t.

(3)

(d) Find the exact distance of P from O at the instant when P is moving with speed $10\,\mathrm{m\,s^{-1}}$

(6)

5.	[In this question, position vectors are given relative to a fixed origin.]	
	At time t seconds, where $t > 0$, a particle P has velocity $\mathbf{v} \mathbf{m} \mathbf{s}^{-1}$ where	
	$\mathbf{v} = 3t^2 \mathbf{i} - 6t^{\frac{1}{2}} \mathbf{j}$	
	(a) Find the speed of P at time $t = 2$ seconds.	(2)
	(b) Find an expression, in terms of t , \mathbf{i} and \mathbf{j} , for the acceleration of P at time t seconds, where $t > 0$	(2)
	At time $t = 4$ seconds, the position vector of P is $(\mathbf{i} - 4\mathbf{j})$ m.	(2)
	(c) Find the position vector of P at time $t = 1$ second.	
		(4)

6. At time t seconds, where $t \ge 0$, a particle P has velocity vms
--

$$\mathbf{v} = (t^2 - 3t + 7)\mathbf{i} + (2t^2 - 3)\mathbf{j}$$

Find

(a) the speed of P at time t = 0

(3)

(b) the value of t when P is moving parallel to $(\mathbf{i} + \mathbf{j})$

(2)

(c) the acceleration of P at time t seconds

(2)

(d) the value of t when the direction of the acceleration of P is perpendicular to \mathbf{i}

(2)