Que	estion	Scheme	Marks	AOs
1	(a)	Differentiate v w.r.t. t	M1	3.1a
		$a = \frac{\mathrm{d}v}{\mathrm{d}t} = 10 - 2t \text{isw}$	A1	1.1b
			(2)	
1	(b)	Solve problem using $v = 0$ when $t = 6$	M1	3.1a
		$0 = 10t - t^2 - 24$	A1	1.1b
		Solve quadratic oe to find other value of <i>t</i>	M1	1.1b
		<i>t</i> = 4	A1	1.1b
			(4)	
1	l(c)	Integrate v or $-v$ w.r.t. t	M1	3.1a
		$5t^2 - \frac{1}{3}t^3 - 24t$	A1	1.1b
		Total distance = $-\left[5t^2 - \frac{1}{3}t^3 - 24t\right]_0^4 + \left[5t^2 - \frac{1}{3}t^3 - 24t\right]_4^6$	M1	2.1
		$\frac{116}{3}$ (m)	A1	1.1b
			(4)	
			(10 n	narks)
Not	es:			
1a	M1	Differentiate, with both powers decreasing by 1		
	A1	Correct expression		
1b	M1	Put $t = 6$ OR use $(t-6)(t-x) = t^2$	-10t + k	oe
	A1	Correct expression (unsimplified) for v OR $v = (t-6)(t-4)$		
	M1	Put $v = 0$ to give quadratic in t and solve for other value of t		
	A1	<i>t</i> = 4		
1c	M1	Integrate, with at least two powers increasing by 1 (allow if only two t	erms integ	rated)
	A1	Correct expression		
	M1	Complete method to find the total distance		
	A1	Accept 39(m) or better		

Question	Scheme	Marks	AOs
2(a)	Differentiate s wrt t	M1	3.1a
	$(v =) t^2 - 5t + 6$	Al	1.1b
	Equate their v to 0 and solve	M1	1.1b
	t = 2 or 3	Al	1.1b
	(a =) 2t - 5	B1 ft	2.1
	a = 1 and -1 (m s ⁻²) isw (A0 if extras)	A1	1.1b
		(6)	
(b)	Attempt to find values of <i>s</i> for $t = 2, 3$ and 4 oe Correct values are $\left(s_2 = \frac{14}{3}, s_3 = \frac{9}{2} \text{ and } s_4 = \frac{16}{3}\right)$ Could be implied by correct values for: s_2 , $(s_3 - s_2)$ and $(s_4 - s_3)$ which are $\frac{14}{3}$, $(-\frac{1}{6})$ and $\frac{5}{6}$ Total distance travelled	DM 1	1.1b
	$= s_{2} + (s_{2} - s_{3}) + s_{4} - s_{3}$ OR $s_{2} - (s_{3} - s_{2}) + s_{4} - s_{3}$ OR $\left[\frac{1}{3}t^{3} - \frac{5}{2}t^{2} + 6t\right]_{0}^{2} - \left[\frac{1}{3}t^{3} - \frac{5}{2}t^{2} + 6t\right]_{2}^{3} + \left[\frac{1}{3}t^{3} - \frac{5}{2}t^{2} + 6t\right]_{3}^{4}$ OR $\frac{14}{3} - (-\frac{1}{6}) + \frac{5}{6}$ OR $s_{2} + 2(s_{2} - s_{3}) + s_{4} - s_{2}$ $(= 2s_{2} - 2s_{3} + s_{4})$ oe	M1	2.1
	$5\frac{2}{3}$ oe (m) Accept 5.7 or better	A1	1.1b
		(3)	
		(9 n	narks)
Notes:			
2a M1	Differentiate, with at least 2 powers decreasing by 1		
A1	Correct expression		
M1	Must have attempted to differentiate s to find v and be solving a 3 ter	rm quadratic	
A1	Both values needed		
B1 ft	Follow their v (must be differentiating)		

	A1	cao
2h		This mark is dependent on the 2^{nd} M1 in part (a) and their <i>t</i> values are between 0 and 4. Clear attempt to find all three <i>s</i> values (may integrate their <i>v</i> incorrectly) N.B. No penalty for extra values.
	M1	Complete method using their <i>s</i> values Do NOT condone sign errors.
	A1	Any equivalent fraction, 5.7 or better.
		S.C. Correct answer, with no working, scores all 3 marks, since $\int_{0}^{4} t^2 - 5t + 6 dt$ entered on a calculator will give $\frac{17}{3}$

Que	stion	Scheme	Marks	AOs		
3	s(a)	$15 - 3^2 - 2 \times 3 = 0 *$	B1*	1.1b		
			(1)			
3	(b)	Differentiate v wrt t	M1	2.1		
		-2t - 2	A1	1.1b		
		8 (m s ⁻²)	A1	1.1b		
			(3)			
3	8(c)	Integrate v w.r.t. t	M1	1.1b		
		$15t - \frac{1}{3}t^3 - t^2$	A1	1.1b		
		Total distance = $\left[15t - \frac{1}{3}t^3 - t^2\right]_0^3 - \left[15t - \frac{1}{3}t^3 - t^2\right]_3^4$				
		OR $s_3 + (s_3 - s_4)$	M1	3.1a		
		where s_3 means the value of their integral when $t = 3$.				
		N.B. Allow the negative of this.				
		$\frac{94}{3}$ (m)	A1	1.1b		
			(4)			
		·	(8	marks)		
Note	es:					
За	B1*	Correct expression, correctly evaluated to give 0 OR $0=15-t^2-2t$ t=3				
3b	M1	Differentiate v, with at least two powers decreasing by 1				
	A1	Correct expression				
	A1	cao (must be positive)				
		N.B. If they give 8 as their answer, without any working, this can score all 3 r	narks.			
3c	M1	Integrate v, with at least two powers increasing by 1 (allow if only two terms	integrated).		
	A1	Correct expression. Ignore (+ C)				
	M1	Complete method to find the total distance or displacement				
	A1	Accept 31(m) or better, must be positive				
		N.B. If the indefinite integral $(15t - \frac{1}{3}t^3 - t^2)$ is never seen, they score nothin correct answer appears, as this indicates they have used a calculator to do the question.		he		

Qu	uestion	Scheme	Marks	AOs
		Allow column vectors throughout this question		
	4(a)	Differentiate v wrt t	M1	3.1a
		$\frac{3}{2}t^{-\frac{1}{2}}\mathbf{i}-2\mathbf{j}$ isw	A1	1.1b
			(2)	
	4(b)	$3t^{\frac{1}{2}}=2t$	M1	2.1
		Solve for <i>t</i>	DM1	1.1b
		$t = \frac{9}{4}$	A1	1.1b
			(3)	
	4(c)	Integrate v wrt <i>t</i>	M1	3.1a
		$\mathbf{r} = 2t^{\frac{3}{2}}\mathbf{i} - t^2\mathbf{j}(+\mathbf{C})$	A1	1.1b
		$t = 1, \mathbf{r} = -\mathbf{j} => \mathbf{C} = -2\mathbf{i}$ so $\mathbf{r} = 2t^{\frac{3}{2}}\mathbf{i} - t^{2}\mathbf{j} - 2\mathbf{i}$	A1	2.2a
			(3)	
	4(d)	$\sqrt{(3t^{\frac{1}{2}})^2 + (2t)^2} = 10$ or $(3t^{\frac{1}{2}})^2 + (2t)^2 = 10^2$	M1	2.1
		$9t + 4t^2 = 100$	M(A)1	1.1b
		t = 4	A1	1.1b
		$\mathbf{r} = 14\mathbf{i} - 16\mathbf{j}$	M1	1.1b
		$\sqrt{14^2 + (-16)^2}$	M1	3.1a
		$\sqrt{452} (2\sqrt{113}) (m)$	A1	1.1b
			(6)	
			(14 n	narks
Not	es:			
4a	M1	Both powers decreasing by 1 (M0 if vector(s) disappear but allo	ow recovery)	
	A1	cao		
4b	M1	Complete method, using \mathbf{v} , to obtain an equation in t only, allow	a sign error	
	DM1	Dependent on M1, solve for <i>t</i>		

	A1	cao
4c	M1	Both powers increasing by 1 (M0 if vectors disappear but allow recovery)
	A1	Correct expression without C
	A1	cao
4d	M1	Use of Pythagoras on \mathbf{v} and 10 to set up equation in t
	M(A)1	Correct 3 term quadratic in t
	A1	cao
	M1	Substitute their numerical t value into their r
	M1	Use of Pythagoras to find the magnitude of their r
	A1	CSO

Que	estion	Scheme	Marks	AOs		
5	5(a)	Put $t = 2$ in v and use Pythagoras: $\sqrt{12^2 + (-6\sqrt{2})^2}$	M1	3.1a		
		$\sqrt{216}, 6\sqrt{6}$ or 15 or better (m s ⁻¹)	A1	1.1b		
			(2)			
5	5(b)	Differentiate v wrt <i>t</i> to obtain a	M1	3.4		
		$6t\mathbf{i} - 3t^{-\frac{1}{2}}\mathbf{j}$ oe (m s ⁻²) isw	A1	1.1b		
			(2)			
5	5(c)	Integrate v wrt <i>t</i> to obtain r	M1	3.4		
		$\mathbf{r} = t^3 \mathbf{i} - 4t^{\frac{3}{2}} \mathbf{j} \ (+\mathbf{C})$	A1	1.1b		
		$(\mathbf{i} - 4\mathbf{j}) = 4^3\mathbf{i} - 4 \times 4^{\frac{3}{2}}\mathbf{j} + \mathbf{C}$	M1	3.1a		
		$(-62\mathbf{i}+24\mathbf{j})$ (m) isw e.g. if they go on to find the distance.	A1	1.1b		
			(4)			
			(8 n	narks)		
Note	es: Ac	cept column vectors throughout apart from the answer to	(b).			
		Need square root but -ve sign not required. Allow i 's and/or j 's to g their v at $t = 2$, provided they have applied Pythagoras correctly.	go missing froi	n		
	A1	cao N.B . Correct answer with no working can score 2 marks.				
5b	M1	Both powers decreasing by 1. Allow a column vector. M0 if i or j is missing but allow recovery in (b).				
	A1	cao. Do not accept a column vector.				
5c	M1	Both powers increasing by 1 M0 if i or j is missing but allow recovery.				
	A1	$(\mathbf{r} =)$ not required				
	M1	Putting $\mathbf{r} = (\mathbf{i} - 4\mathbf{j})$ and $t = 4$ into their displacement vector express C (allow <i>C</i>) to give an equation in C only, seen or implied. Must have attempted to integrate v for this mark to be available. N.B. C does not need to be found and <u>this is a method mark, so allow</u>		st have		
	A1	cao				

Que	stion	Scheme	Marks	AOs
6	(a)	7i – 3j seen or implied by Pythagoras	B1	1.1b
		Use Pythagoras: $\sqrt{7^2 + (-3)^2}$	M1	3.1a
		$\sqrt{58}$, 7.6 or better (${ m m~s^{-1}}$)	A1	1.1b
			(3)	
6	(b)	$t^{2}-3t+7=2t^{2}-3$ OR $\frac{t^{2}-3t+7}{2t^{2}-3}=\frac{1}{1}=1$	M1	2.1
		t = 2 only	A1	1.1b
			(2)	
6	(c)	Differentiate v wrt <i>t</i> to give a vector.	M1	3.1a
		$(2t-3)\mathbf{i}+4t\mathbf{j}$	A1	1.1b
			(2)	
6	(d)	2t - 3 = 0 M	M1	3.1a
		<i>t</i> = 1.5	A1	1.1b
			(2)	
		1	(9	marks)
Note	es: All	ow column vectors throughout.		
6a	B1	сао		
	M1	Use of Pythagoras, including the square root, on a velocity vector at $t = 0$		
	A1	cao. Must come from a <u>correct</u> v .		
6b	M1	Equating i and j components of v or a ratio of 1:1 to obtain a quadratic in <i>t</i> only. If they use a constant, e.g. $t^2 - 3t + 7 = k$ and $2t^2 - 3 = k$, <i>k</i> must be eliminated to earn t mark. N.B. M0 (since wrong working seen) if they write down $\mathbf{i} + \mathbf{j} = (t^2 - 3t + 7)\mathbf{i} + (2t^2 - 3)\mathbf{j}$ OR $\begin{pmatrix} 1\\ 1 \end{pmatrix} = \begin{pmatrix} t^2 - 3t + 7\\ 2t^2 - 3 \end{pmatrix}$ OR $t^2 - 3t + 7 = 1$ and $2t^2 - 3 = 1$		n this

		and then $t^2 - 3t + 7 = 2t^2 - 3$
	A1	<i>t</i> = 2
		N.B. Allow M1A1 for a correct trial and error method where they obtain $\mathbf{v} = 5\mathbf{i} + 5\mathbf{j}$ when $t =$
		2 but M0 if they don't get $t = 2$
6c	M1	At least one power decreasing by 1 in each component in their ${f v}$
		(M0 if clearly dividing by t)
		Both i and j needed in their answer or a column vector
		Allow recovery if the i and j disappear and then reappear.
	A1	cao (must be a vector) is e.g. if they find the magnitude or put $t = 0$ or differentiate again
		i's and j's do not need to be collected.
		N.B. Allow M1A0 for $2t - 3\mathbf{i} + 4t\mathbf{j}$
Cal	N 4 1	2t - 3 = 0 or (their derivative of the i -component of v) = 0
6d	M1	N.B . M0 if they equate the derivative of both components of \mathbf{v} to zero.
	A1	сао
		N.B. Correct answer, with no working, can score both marks.