**1.** A particle *P* moves along a straight line.

At time t seconds, the velocity  $v \, \text{m s}^{-1}$  of P is modelled as

$$v = 10t - t^2 - k \qquad t \geqslant 0$$

where k is a constant.

(a) Find the acceleration of *P* at time *t* seconds.

**(2)** 

The particle P is instantaneously at rest when t = 6

(b) Find the other value of t when P is instantaneously at rest.

**(4)** 

(c) Find the total distance travelled by P in the interval  $0 \le t \le 6$ 

**(4)** 

a)  $a = \frac{dv}{at}$   $v = 10t - t^2 - k$ 

6) instantaneously at rest when V=0

0=10(6)-(6)2-k

V=10t-E2-24 ) set v=

i.t=6 or t=4 (

found

## **Question 1 continued**



$$= = \int_{0}^{4} (10t - t^{2} - 24) dt + \int_{4}^{6} (10t - t^{2} - 24) dt$$
 (1)

$$= -\left[5t^2 - \frac{1}{3}t^3 - 24t\right]_0^4 + \left[5t^2 - \frac{1}{3}t^3 - 24t\right]_0^6$$

$$z - \left(-\frac{112}{3} - 0\right) + \left(-36 + \frac{112}{3}\right)$$

**2.** A fixed point *O* lies on a straight line.

A particle *P* moves along the straight line.

At time t seconds,  $t \ge 0$ , the distance, s metres, of P from O is given by

$$s = \frac{1}{3}t^3 - \frac{5}{2}t^2 + 6t$$

(a) Find the acceleration of P at each of the times when P is at instantaneous rest.

**(6)** 

(b) Find the total distance travelled by *P* in the interval  $0 \le t \le 4$ 

**(3)** 

a) And v and a:

$$S = \frac{1}{3}t^3 - \frac{5}{2}t^2 + 6t$$

$$V = \frac{ds}{dt} = t^2 - 5t + 6$$

$$\alpha = \frac{dV}{dt} = 2t - 5$$

instantaneously at rest when V=0:

$$t^2 - 5t + 6 = 0$$
 (t-2)(t-3)=0

If t=2, a= 2(2)-5=-1



## 3. In this question you must show all stages of your working.

## Solutions relying entirely on calculator technology are not acceptable.

A fixed point O lies on a straight line.

A particle P moves along the straight line such that at time t seconds,  $t \ge 0$ , after passing through O, the velocity of P,  $v \text{ m s}^{-1}$ , is modelled as

$$v = 15 - t^2 - 2t$$

(a) Verify that P comes to instantaneous rest when t = 3

**(1)** 

(b) Find the magnitude of the acceleration of P when t = 3

**(3)** 

(c) Find the total distance travelled by P in the interval  $0 \le t \le 4$ 

(4)

a) sub t=3 into v: 
$$v=15-(3)^2-2(3)$$

= 0 (1)

b) 
$$V = 15 - 6^2 - 26$$

 $\frac{dy}{dt} = -2(3) - 2 = -8$ 

dv = 21 0 0

magnitude =  $8 \text{ ms}^{-2}$  (1)



Distance travelled = area under graph



area under 20-ouxis is negative so we must subtract this portion

$$= \left[15t - \frac{1}{3}t^3 - t^2\right] \odot \left[15t - \frac{1}{3}t^3 - t^2\right]_3^4$$

$$=27-0-\left(\frac{68}{3}-27\right)=\frac{94}{3}$$

**4.** At time t seconds, a particle P has velocity  $\mathbf{v} \, \mathbf{m} \, \mathbf{s}^{-1}$ , where

$$\mathbf{v} = 3t^{\frac{1}{2}} \mathbf{i} - 2t \mathbf{j} \qquad t > 0$$

(a) Find the acceleration of P at time t seconds, where t > 0

**(2)** 

(b) Find the value of t at the instant when P is moving in the direction of  $\mathbf{i} - \mathbf{j}$ 

(3)

At time t seconds, where t > 0, the position vector of P, relative to a fixed origin O, is  $\mathbf{r}$  metres.

When t = 1,  $\mathbf{r} = -\mathbf{j}$ 

(c) Find an expression for  $\mathbf{r}$  in terms of t.

**(3)** 

(d) Find the exact distance of P from O at the instant when P is moving with speed  $10\,\mathrm{m\,s^{-1}}$ 

 $\Delta = \frac{dV}{dt} \qquad V = 3t \frac{1}{2} - 2t \frac{1}{2}$   $\Delta = \frac{3}{7} + \frac{7}{2} = 2 = 3$   $\Delta = \frac{3}{7} + \frac{7}{2} = 2 = 3$ (6)

6) 
$$y = k(i - j)$$

$$\underline{\vee} = \begin{pmatrix} k \\ -k \end{pmatrix} = \begin{pmatrix} 3\sqrt{t} \\ -2t \end{pmatrix}$$

comparing elements: k=3Jt

$$\Rightarrow$$
 3  $\sqrt{6} = 26$   $0 = \sqrt{6} (2\sqrt{6} - 3)$   $0$ 

in the or  $t = \frac{3}{2} \Rightarrow t = \frac{9}{4}$ 

$$\underline{C} = 2t^{3/2} \cdot \underbrace{0}_{1} + \underline{C}_{1}$$

## **Question 4 continued**

$$\underline{r} = 2t \underline{i} - t^2 \underline{j} + C$$

when 
$$t=1$$
,  $c=-j$ 

$$-j=2i-j+c$$

$$C = -2i$$

$$c = (2t^{3/2} - 2)i - t^2j$$

$$C = (2(4)^{2} - 2)i - (4)^{2}j$$

**5.** [*In this question, position vectors are given relative to a fixed origin.*]

At time t seconds, where t > 0, a particle P has velocity  $\mathbf{v} \,\mathrm{m} \,\mathrm{s}^{-1}$  where

$$\mathbf{v} = 3t^2 \mathbf{i} - 6t^{\frac{1}{2}} \mathbf{j}$$

(a) Find the speed of P at time t = 2 seconds.

**(2)** 

(b) Find an expression, in terms of t,  $\mathbf{i}$  and  $\mathbf{j}$ , for the acceleration of P at time t seconds, where t > 0

**(2)** 

**(4)** 

At time t = 4 seconds, the position vector of P is  $(\mathbf{i} - 4\mathbf{j})$  m.

(c) Find the position vector of P at time t = 1 second.

a) sub 
$$t = 2$$
 into  $V: V = 3(2)^{2}i - 6(2)^{1/2}j$ 

) (

b) 
$$\alpha = \frac{dV}{dt} = 6ti - 3tj$$

c) 
$$r = \int V dt = t^3 i - 4t^3 i + c$$

$$\therefore \quad \underline{\Gamma} = (\pm^3 - 63)\underline{i} + (-4\pm^{3/2} + 28)\underline{i}$$

**6.** At time t seconds, where  $t \ge 0$ , a particle P has velocity  $\mathbf{v} \, \mathbf{m} \, \mathbf{s}^{-1}$  where

$$\mathbf{v} = (t^2 - 3t + 7)\mathbf{i} + (2t^2 - 3)\mathbf{j}$$

Find

(a) the speed of P at time t = 0

(3)

(b) the value of t when P is moving parallel to (i + j)

**(2)** 

(c) the acceleration of P at time t seconds

**(2)** 

(d) the value of t when the direction of the acceleration of P is perpendicular to  $\mathbf{i}$ 

**(2)** 

(a)  $V = (0^2 - 3(0) + 7)i + (2(0)^2 - 3)j$ V = 7i - 3j

(b)  $t^2 - 3t + 7 = 2t^2 - 3$  paalle to (i+j) means coefficients  $t^2 + 3t - 10 = 0$  of i and j are equal: (t+5)(t-2) = 0t=-5 or t=2 in so xi = xj

t = 2 because time can't be less than 0.

- (c)  $\frac{dV}{dt} = (2t-3)i + (4t)j \leftarrow \text{acceleration is rate of change of speed}$  $\therefore a = (2t-3)i + (4t)j \circ \text{over time, so find } \frac{dV}{dt}$
- (d) 2t-3=0  $\bigcirc$   $\bigcirc$