AQA Mechanics

Topic Questions from Papers

Differential Equations

PhysicsAndMathsTutor.com

(7 marks)

(Q5, Jan 2006)

A car, of mass 1600 kg, is travelling along a straight horizontal road at a speed of $20 \,\mathrm{m\,s^{-1}}$ 1 when the driving force is removed. The car then freewheels and experiences a resistance force. The resistance force has magnitude 40v newtons, where $v \,\mathrm{m \, s^{-1}}$ is the speed of the car after it has been freewheeling for t seconds.

Find an expression for v in terms of t.

- A particle of mass 20 kg moves along a straight horizontal line. At time t seconds the 2 velocity of the particle is $v \,\mathrm{m}\,\mathrm{s}^{-1}$. A resistance force of magnitude $10\sqrt{v}$ newtons acts on the particle while it is moving. At time t = 0 the velocity of the particle is 25 m s^{-1} .
 - (a) Show that, at time t

$$v = \left(\frac{20-t}{4}\right)^2 \tag{7 marks}$$

(b) State the value of t when the particle comes to rest.

(Q6, June 2006)

(3 marks)

- 3 A motorcycle has a maximum power of 72 kilowatts. The motorcycle and its rider are travelling along a straight horizontal road. When they are moving at a speed of $V \,\mathrm{m\,s^{-1}}$, they experience a total resistance force of magnitude kV newtons, where k is a constant.
 - (a) The maximum speed of the motorcycle and its rider is $60 \,\mathrm{m \, s^{-1}}$.

Show that k = 20.

When the motorcycle is travelling at $20 \,\mathrm{m \, s^{-1}}$, the rider allows the motorcycle to (b) freewheel so that the only horizontal force acting is the resistance force. When the motorcycle has been freewheeling for t seconds, its speed is $v m s^{-1}$ and the magnitude of the resistance force is 20v newtons.

The mass of the motorcycle and its rider is 500 kg.

- (i) Show that $\frac{dv}{dt} = -\frac{v}{25}$. (2 marks)
- (ii) Hence find the time that it takes for the speed of the motorcycle to reduce from $20 \,\mathrm{m\,s^{-1}}$ to $10 \,\mathrm{m\,s^{-1}}$. (6 marks)

(Q7, Jan 2007)

PMT

(1 mark)

- 4 A stone of mass *m* is moving along the smooth horizontal floor of a tank which is filled with a viscous liquid. At time *t*, the stone has speed *v*. As the stone moves, it experiences a resistance force of magnitude λmv , where λ is a constant.
 - (a) Show that

$$\frac{\mathrm{d}v}{\mathrm{d}t} = -\lambda v \qquad (2 \text{ marks})$$

(b) The initial speed of the stone is U.

Show that

$$v = Ue^{-\lambda t}$$
 (4 marks)
(Q7, June 2007)

- 5 A car of mass 600 kg is driven along a straight horizontal road. The resistance to motion of the car is kv^2 newtons, where $v m s^{-1}$ is the velocity of the car at time t seconds and k is a constant.
 - (a) When the engine of the car has power 8 kW, show that the equation of motion of the car is

$$600\frac{dv}{dt} - \frac{8000}{v} + kv^2 = 0$$
 (4 marks)

- (b) When the velocity of the car is $20 \,\mathrm{m \, s^{-1}}$, the engine is turned off.
 - (i) Show that the equation of motion of the car now becomes

$$600\frac{\mathrm{d}v}{\mathrm{d}t} = -kv^2 \tag{1 mark}$$

(ii) Find, in terms of k, the time taken for the velocity of the car to drop to 10 ms^{-1} . (5 marks)

(Q8, Jan 2008)

6 A car, of mass m, is moving along a straight smooth horizontal road. At time t, the car has speed v. As the car moves, it experiences a resistance force of magnitude 0.05mv. No other horizontal force acts on the car.

(a) Show that

$$\frac{\mathrm{d}v}{\mathrm{d}t} = -0.05v \qquad (1 \text{ mark})$$

- (Q6, June 2008)
- 7 A stone, of mass 0.05 kg, is moving along the smooth horizontal floor of a tank, which is filled with oil. At time *t*, the stone has speed *v*. As the stone moves, it experiences a resistance force of magnitude $0.08v^2$.
 - (a) Show that

$$\frac{\mathrm{d}v}{\mathrm{d}t} = -1.6v^2 \qquad (2 \text{ marks})$$

(b) The initial speed of the stone is 3 m s^{-1} .

Show that

$$v = \frac{15}{5+24t}$$
 (5 marks)
(Q8, Jan 2009)

8 A stone, of mass *m*, is moving in a straight line along smooth horizontal ground.

At time *t*, the stone has speed *v*. As the stone moves, it experiences a total resistance force of magnitude $\lambda m v^{\frac{3}{2}}$, where λ is a constant. No other horizontal force acts on the stone.

(a) Show that

$$\frac{\mathrm{d}v}{\mathrm{d}t} = -\lambda v^{\frac{3}{2}} \qquad (2 \text{ marks})$$

(b) The initial speed of the stone is $9 \,\mathrm{m \, s^{-1}}$.

Show that

$$v = \frac{36}{\left(2 + 3\lambda t\right)^2} \tag{7 marks}$$

(c) Find, in terms of λ , the time taken for the speed of the stone to drop to 4 m s^{-1} .

(3 marks) (Q8, June 2009) PMT

9 A golf ball, of mass $m \, \text{kg}$, is moving in a straight line across smooth horizontal ground. At time t seconds, the golf ball has speed $v \, \text{m s}^{-1}$. As the golf ball moves, it experiences a resistance force of magnitude $0.2mv^{\frac{1}{2}}$ newtons until it comes to rest. No other horizontal force acts on the golf ball.

Model the golf ball as a particle.

(a) Show that

$$\frac{\mathrm{d}v}{\mathrm{d}t} = -0.2v^{\frac{1}{2}} \qquad (1 \text{ mark})$$

(b) When t = 0, the speed of the golf ball is 16 m s^{-1} .

Show that
$$v = (4 - 0.1t)^2$$
. (5 marks)

- (c) Find the value of t when v = 1. (3 marks)
- (d) Find the distance travelled by the golf ball as its speed decreases from 16 m s^{-1} to 1 m s^{-1} . (4 marks)

(Q5, Jan 2010)

10 A particle is moving along a straight line. At time *t*, the velocity of the particle is *v*. The acceleration of the particle throughout the motion is $-\frac{\lambda}{v^{\frac{1}{4}}}$, where λ is a positive constant. The velocity of the particle is *u* when t = 0. Find *v* in terms of *u*, λ and *t*. (7 marks)

(Q5, June 2010)

PMT

11 Vicky has mass 65 kg and is skydiving. She steps out of a helicopter and falls vertically. She then waits a short period of time before opening her parachute. The parachute opens at time t = 0 when her speed is 19.6 m s⁻¹, and she then experiences an air resistance force of magnitude 260v newtons, where $v \,\mathrm{m}\,\mathrm{s}^{-1}$ is her speed at time t seconds. When t > 0: (a) show that the resultant downward force acting on Vicky is (i) 65(9.8 - 4v) newtons (1 mark) (ii) show that $\frac{dv}{dt} = -4(v - 2.45)$. (2 marks) By showing that $\int \frac{1}{v-2.45} dv = -\int 4 dt$, find v in terms of t. (b) (5 marks)

(Q8, Jan 2011)

PMT

12 A car, of mass m kg, is moving along a straight horizontal road. At time *t* seconds, the car has speed $v \text{ m s}^{-1}$. As the car moves, it experiences a resistance force of magnitude $2mv^{\frac{5}{4}}$ newtons. No other horizontal force acts on the car.

(a) Show that

$$\frac{\mathrm{d}v}{\mathrm{d}t} = -2v^{\frac{5}{4}} \qquad (1 \text{ mark})$$

(b) The initial speed of the car is $16 \,\mathrm{m\,s^{-1}}$.

Show that

$$v = \left(\frac{2}{t+1}\right)^4$$
 (5 marks)
(Q6, June 2011)

Alice places a toy, of mass 0.4 kg, on a slope. The toy is set in motion with an initial velocity of 1 m s^{-1} down the slope. The resultant force acting on the toy is (2 - 4v) newtons, where $v \text{ m s}^{-1}$ is the toy's velocity at time t seconds after it is set in motion.

(a) Show that
$$\frac{dv}{dt} = -10 (v - 0.5)$$
. (2 marks)

(b) By using
$$\int \frac{1}{v - 0.5} dv = -\int 10 dt$$
, find v in terms of t. (5 marks)

(c) Find the time taken for the toy's velocity to reduce to
$$0.55 \,\mathrm{m \, s^{-1}}$$
. (3 marks)
(Q6, Jan 2012)

14 A stone, of mass 5 kg, is projected vertically downwards, in a viscous liquid, with an initial speed of $7 \,\mathrm{m \, s^{-1}}$.

At time t seconds after it is projected, the stone has speed $v \,\mathrm{m}\,\mathrm{s}^{-1}$ and it experiences a resistance force of magnitude 9.8v newtons.

(a) When $t \ge 0$, show that

$$\frac{\mathrm{d}v}{\mathrm{d}t} = -1.96(v-5) \qquad (2 \text{ marks})$$

(b) Find v in terms of t.

(5 marks) (Q7, June 2012) 15 A particle, of mass 12 kg, is moving along a straight horizontal line. At time t seconds, the particle has speed $v \,\mathrm{m}\,\mathrm{s}^{-1}$. As the particle moves, it experiences a resistance force of magnitude $4v^{\frac{1}{3}}$. No other horizontal force acts on the particle.

The initial speed of the particle is 8 m s^{-1} .

(a) Show that

$$v = \left(4 - \frac{2}{9}t\right)^{\frac{3}{2}} \tag{6 marks}$$

(b) Find the value of t when the particle comes to rest.

(1 mark) (Q5, Jan 2013)

16 A car accelerates from rest along a straight horizontal road.

The car's engine produces a constant horizontal force of magnitude 4000 N.

At time t seconds, the speed of the car is $v m s^{-1}$, and a resistance force of magnitude 40v newtons acts upon the car.

The mass of the car is 1600 kg.

(a) Show that
$$\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{100 - v}{40}$$
. (2 marks)

(b) Find the velocity of the car at time t.

(6 marks) (Q6, June 2013)