

Mark Scheme (Results)

Summer 2012

GCE Mechanics M5 (6681) Paper 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012
Publications Code UA032687
All the material in this publication is copyright
© Pearson Education Ltd 201

June 2012 6681 Mechanics M5 Mark Scheme

Question Number	Scheme	Marks	
2. (a)	$(m + \delta m)(v + \delta v) - (-\delta m)(1000 - v) - mv = -mg \delta t$ $\delta v + \frac{1000}{m} \delta m = -g \delta t$	M1 A2	
	$\frac{\mathrm{d}v}{\mathrm{d}t} + \frac{1000}{m} \frac{\mathrm{d}m}{\mathrm{d}t} = -9.8 \qquad \text{PRINTED ANSWER}$	DM1 A1	(5)
(b)	$\frac{dv}{dt} - \frac{15000}{1500 - 15t} = -9.8$ $\frac{dv}{dt} - \frac{1000}{100 - t} = -9.8$	M1	(5)
	$v = \int_{0}^{t} \frac{1000}{100 - t} - 9.8 dt$	M1	
	$= \left[-1000 \ln(100 - t) - 9.8t \right]_0^t$	A1	
	$v = 1000 \ln \frac{100}{(100 - t)} - 9.8t$	DM1 A1	
			(5) 10

Question Number	Scheme	Marks
3. (a)	$I_{P} = \frac{4}{3}m(\frac{3a}{2})^{2} + 3m(2a)^{2} = 15ma^{2}$ $OR = \frac{1}{3}m(\frac{3a}{2})^{2} + m(\frac{3a}{2})^{2} + 3m(2a)^{2} = 15ma^{2}$ PRINTED ANSWER	M1 A1
(b)	KE gain = PE loss $\frac{1}{2}3mv^{2} = 3mg.2a$ $v = 2\sqrt{ag}$ CAM: $3mv.2a = 15ma^{2}\omega$ OR $\frac{1}{2}(12ma^{2})\Omega^{2} = 3mg.2a$ $\Omega = \sqrt{\frac{g}{a}}$ CAM: $(12ma^{2})\Omega = 15ma^{2}\omega$	(2) M1 A1 M1 A1
	$\omega = \frac{2av}{5a^2} = \frac{4}{5}\sqrt{\frac{g}{a}}$	A1
	KE loss = PE gain $\frac{1}{2}15ma^2\omega^2 = mg\frac{3a}{2}(1-\cos\theta) + 3mg.2a(1-\cos\theta)$ $\cos\theta = \frac{9}{25} \text{ i.e. }\theta = \cos^{-1}(\frac{9}{25})$ PRINTED ANSWER	M1 A1 A1 M1 A1 (10)
	OR $\frac{1}{2}15ma^2\omega^2 = 4mg\frac{15a}{8}(1-\cos\theta)$	M1 A1 A1
	$\cos \theta = \frac{9}{25}$ i.e. $\theta = \cos^{-1}(\frac{9}{25})$ PRINTED ANSWER	M1 A1

Question Number	Scheme	Marks
4.	$M(Q)$, $2mgr\sin\beta + 3mg2r\sin\beta = 15mr^2\theta$	M1 A1
	OR $M(Q)$, $5mg\frac{8r}{5}\sin\beta = 15mr^2\theta$	M1 A1
	$(\Box) 2mg\sin\beta + 3mg\sin\beta - X = 2mr\theta + 3m2r\theta$	M1 A1
	OR $ (\Box) 5mg\sin\beta - X = 5m\frac{8r}{5} \cdot \theta $	M1 A1
	solving for X ,	M1
	$X = \frac{11mg}{60}$	A1
		6

Question Number	Scheme	Marks	
	$\mathbf{F}_{1} = 7. \frac{1}{\sqrt{4^{2} + (-6)^{2} + (-12)^{2}}} \begin{pmatrix} 4 \\ -6 \\ -12 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \\ -6 \end{pmatrix}$	B1	
	$\mathbf{F}_2 = 3. \frac{1}{\sqrt{2^2 + 4^2 + 4^2}} \begin{pmatrix} -2 \\ -4 \\ -4 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \\ -2 \end{pmatrix}$	B1	
	$\mathbf{F}_{3} = 3\sqrt{10} \cdot \frac{1}{\sqrt{2^{2} + (-10)^{2} + (-16)^{2}}} \begin{pmatrix} 2 \\ -10 \\ -16 \end{pmatrix} = \begin{pmatrix} 1 \\ -5 \\ -8 \end{pmatrix}$	B1	
(b)	$\sum \mathbf{F}_{i} = \begin{pmatrix} 2 \\ -3 \\ -6 \end{pmatrix} + \begin{pmatrix} -1 \\ -2 \\ -2 \end{pmatrix} + \begin{pmatrix} 1 \\ -5 \\ -8 \end{pmatrix} = \begin{pmatrix} 2 \\ -10 \\ -16 \end{pmatrix} \text{PRINTED ANSWER}$	M1 A1	(3)
(c)	Taking moments about <i>O</i> ,		(2)
. ,	$\begin{pmatrix} 4 \\ -6 \\ -12 \end{pmatrix} \mathbf{x} \begin{pmatrix} 1 \\ -5 \\ -8 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mathbf{x} \begin{pmatrix} 2 \\ -10 \\ -16 \end{pmatrix}$	M1	
	$\begin{pmatrix} -12 \\ 20 \\ -14 \end{pmatrix} = \begin{pmatrix} -16y + 10z \\ 2z + 16x \\ -10x - 2y \end{pmatrix} \text{ put } x = 0 \Rightarrow z = 10 \Rightarrow y = 7$	A1 A1 M1	
	so, $\mathbf{r} = \begin{pmatrix} 0 \\ 7 \\ 10 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -5 \\ -8 \end{pmatrix}$ is a vector equation.	A1	
	(10) (-8)		(5) 10

Question Number	Scheme	Marks
6.		
(a)	$3mg - T_1 = 3mr\alpha$	M1 A1
	$T_2 - 2mg = 2mr\alpha$	M1 A1
	$r(T_1 - T_2) = \frac{1}{2} 4mr^2 \alpha$	M1 A1
	adding, $mg = 7mr\alpha$	DM1
	$\alpha = \frac{g}{7r}$	A1
	7r	(8)
(b)	$G = 2mr^2\beta$	M1 A1
	$0^2 = \Omega^2 - 2\beta\theta$	M1
	$G = 2mr^{2}\beta$ $0^{2} = \Omega^{2} - 2\beta\theta$ $\theta = \frac{mr^{2}\Omega^{2}}{G}$	A1
	G = G	
		(4) 12
	OR , using Work-Energy	
	$G\theta = \frac{1}{2}2mr^2\Omega^2$	M1 A1
	$\theta = \frac{mr^2\Omega^2}{G}$	M1 A1
	G	

Question Number	Scheme	Marks
7.		
(a)	$\rho = \frac{2m}{bh}$	B1
	$\delta m = \rho \frac{b(h-x)}{h} \delta x$	M1
	$=\frac{2m}{h^2}(h-x)\delta x$	
	$\delta I = \frac{2m}{h^2} (h - x) x^2 \delta x$	A1
	$I = \int_{0}^{h} \frac{2m}{h^{2}} (h - x) x^{2} dx = \frac{2m}{h^{2}} \left[\frac{hx^{3}}{3} - \frac{x^{4}}{4} \right]_{0}^{h}$	M1 A1
	$=\frac{1}{6}mh^2$ PRINTED ANSWER	DM1 A1
		(7)
(b)	$I = 2 \times \frac{1}{6} m(a\sqrt{2})^2 = \frac{2}{3} ma^2$	B1
	$k = \sqrt{\frac{I}{M}} = \sqrt{\frac{\frac{2}{3}ma^2}{2m}} = \frac{a}{\sqrt{3}}$	M1 A1
(a)	MI of square about $QS = \frac{1}{3} \frac{8M}{7} a^2 = \frac{8M}{21} a^2$	(3) M1 A1
(c)	MI of square about $QS = \frac{3}{3} \cdot 7 \cdot u = \frac{21}{21} u$ MI of square about $XY = \frac{8M}{21}a^2 + \frac{8M}{7}(\frac{a\sqrt{2}}{2})^2$	M1 A1
	$= \frac{20Ma^2}{21}$	
		
	Hence, $I_{PQXYS} = \frac{20Ma^2}{21} - \frac{1}{6} \frac{M}{7} (\frac{a}{\sqrt{2}})^2 = \frac{79Ma^2}{84}$ PRINTED	M1 A1 (6)
		16

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467
Fax 01623 450481
Email <u>publication.orders@edexcel.com</u>
Order Code UA032687 Summer 2012

For more information on Edexcel qualifications, please visit our website $\underline{www.edexcel.com}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE $\,$

