Edexcel Maths M5

Past Paper Pack

2009-2013

Centre No.					Pape	er Refer	ence			Surname	Initial(s)
Candidate No.			6	6	8	1	/	0	1	Signature	

Paper Reference(s)

6681/01

Edexcel GCE

Mechanics M5

Advanced/Advanced Subsidiary

Tuesday 23 June 2009 – Morning

Time: 1 hour 30 minutes

Materials required for examination
Mathematical Formulae (Orange or Green)

Items included with question papers
Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions. You must write your answer to each question in the space following the question.

Whenever a numerical value of g is required, take $g = 9.8 \text{ m s}^{-2}$.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 6 questions in this question paper. The total mark for this paper is 75.

There are 24 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy.

©2009 Edexcel Limited.

Printer's Log. No.
N34277RA

W850/R6681/57570 3/3/3/3/3

Turn over

Total

Team Leader's use only

Ouestion

1

2

Leave

Examiner's use only

1.	At time $t = 0$, a particle P of mass $3 \mathrm{kg}$ is at rest at the point A with position vector $(\mathbf{j} - 3\mathbf{k})$ m. Two constant forces \mathbf{F}_1 and \mathbf{F}_2 then act on the particle P and it passes through the point B with position vector $(8\mathbf{i} - 3\mathbf{j} + 5\mathbf{k})$ m.	
	Given that $\mathbf{F}_1 = (4\mathbf{i} - 2\mathbf{j} + 5\mathbf{k})$ N and $\mathbf{F}_2 = (8\mathbf{i} - 4\mathbf{j} + 7\mathbf{k})$ N and that \mathbf{F}_1 and \mathbf{F}_2 are the <i>only</i> two forces acting on P , find the velocity of P as it passes through B , giving your answer as a vector.	
	(7)	

Leave	
hlank	

, ,	At time t seconds, the position vector of a particle P is \mathbf{r} metres, where \mathbf{r} satisfies the vector differential equation
	$\frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}t^2} + 4\mathbf{r} = \mathrm{e}^{2t}\mathbf{j} .$
	When $t = 0$, P has position vector $(\mathbf{i} + \mathbf{j})$ m and velocity $2\mathbf{i}$ m s ⁻¹ .
-	Find an expression for \mathbf{r} in terms of t . (11)
-	
_	
_	

(4)

Leave	
hlank	

- 3. A spaceship is moving in a straight line in deep space and needs to increase its speed. This is done by ejecting fuel backwards from the spaceship at a constant speed c relative to the spaceship. When the speed of the spaceship is v, its mass is m.
 - (a) Show that, while the spaceship is ejecting fuel,

$$\frac{\mathrm{d}v}{\mathrm{d}m} = -\frac{c}{m}.$$
 (5)

The initial mass of the spaceship is m_0 and at time t the mass of the spaceship is given by $m = m_0(1 - kt)$, where k is a positive constant.

(b) Find the acceleration of the spaceship at time *t*.

	Leave blank
Question 3 continued	Otalik

4.

Figure 1

A uniform lamina of mass M is in the shape of a right-angled triangle OAB. The angle OAB is 90°, OA = a and AB = 2a, as shown in Figure 1.

(a) Prove, using integration, that the moment of inertia of the lamina OAB about the edge OA is $\frac{2}{3}Ma^2$.

(You may assume without proof that the moment of inertia of a uniform rod of mass m and length 2l about an axis through one end and perpendicular to the rod is $\frac{4}{3}ml^2$.)

(6)

(7)

The lamina OAB is free to rotate about a fixed smooth horizontal axis along the edge OA and hangs at rest with B vertically below A. The lamina is then given a horizontal impulse of magnitude J. The impulse is applied to the lamina at the point B, in a direction which is perpendicular to the plane of the lamina. Given that the lamina first comes to instantaneous rest after rotating through an angle of 120°,

(b)	find an expression for J , in terms of M , a and g .	

Leave blank

Question 4 continued	blank
Question i continued	

_	
Leave	
hlank	

5.	Two forces $\mathbf{F}_1 = (2\mathbf{i} + \mathbf{j})$ N and $\mathbf{F}_2 = (-2\mathbf{j} - \mathbf{k})$ N act on a rigid body. The force \mathbf{F}_1 acts at the point with position vector $\mathbf{r}_1 = (3\mathbf{i} + \mathbf{j} + \mathbf{k})$ m and the force \mathbf{F}_2 acts at the point with position vector $\mathbf{r}_2 = (\mathbf{i} - 2\mathbf{j})$ m. A third force \mathbf{F}_3 acts on the body such that \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_3 are in equilibrium.								
	(a) Find the magnitude of \mathbf{F}_3 .								
		(4)							
	(b) Find a vector equation of the line of action of \mathbf{F}_3 .	(8)							
	The force \mathbf{F}_3 is replaced by a fourth force \mathbf{F}_4 , acting through the origin O , such that \mathbf{F}_1 and \mathbf{F}_4 are equivalent to a couple.	, \mathbf{F}_2							
	(c) Find the magnitude of this couple.								
		(4)							
		_							
		_							
		_							
		_							

	Leave blank
Question 5 continued	0144111

Leave

6.	A pendulum consists of a uniform rod AB , of length $4a$ and mass $2m$, whose end A is rigidly attached to the centre O of a uniform square lamina $PQRS$, of mass $4m$ and side a . The rod AB is perpendicular to the plane of the lamina. The pendulum is free to rotate about a fixed smooth horizontal axis L which passes through B . The axis L is perpendicular to AB and parallel to the edge PQ of the square.
	(a) Show that the moment of inertia of the pendulum about L is $75ma^2$. (4)
	The pendulum is released from rest when BA makes an angle α with the downward vertical through B , where $\tan \alpha = \frac{7}{24}$. When BA makes an angle θ with the downward vertical through B , the magnitude of the component, in the direction AB , of the force exerted by the axis L on the pendulum is X .
	(b) Find an expression for X in terms of m , g and θ . (9)
	Using the approximation $\theta \approx \sin \theta$,
	(c) find an estimate of the time for the pendulum to rotate through an angle α from its initial rest position.
	(6)

	Leave blank
Question 6 continued	Olding

Centre No.					Pape	er Refer	ence			Surname	Initial(s)
Candidate No.			6	6	8	1	/	0	1	Signature	

Paper Reference(s)

6681/01

Edexcel GCE

Mechanics M5

Advanced/Advanced Subsidiary

Monday 28 June 2010 – Afternoon

Time: 1 hour 30 minutes

Materials	required	for	examination
Mathemati	cal Formu	ılae	(Pink)

Items included with question papers

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer to each question in the space following the question.

Whenever a numerical value of g is required, take $g = 9.8 \text{ m s}^{-2}$.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 6 questions in this question paper. The total mark for this paper is 75.

There are 24 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2010 Edexcel Limited.

 $\overset{\text{Printer's Log. No.}}{N35394A}$

Examiner's use only

Turn over

Total

Leave	
blank	

At time $t = 0$, the position vector of a particle P is $-3\mathbf{j}$ m. At time t sec vector of P is \mathbf{r} metres and the velocity of P is \mathbf{v} m s ⁻¹ . Given that	onds, the position
$\mathbf{v} - 2\mathbf{r} = 4\mathbf{e}^t \mathbf{j} ,$	
find the time when P passes through the origin.	(7)

(6)

Leave blank

2.

Figure 1

A uniform circular disc has mass 4m, centre O and radius 4a. The line POQ is a diameter of the disc. A circular hole of radius 2a is made in the disc with the centre of the hole at the point R on PQ where QR = 5a, as shown in Figure 1.

The resulting lamina is free to rotate about a fixed smooth horizontal axis L which passes through Q and is perpendicular to the plane of the lamina.

(a) Show that the moment of inertia of the lamina about L is $69ma^2$. (7)

The lamina is hanging at rest with P vertically below Q when it is given an angular velocity Ω . Given that the lamina turns through an angle $\frac{2\pi}{3}$ before it first comes to instantaneous rest,

(b) find Ω in terms of g and a.

	Leave blank
Question 2 continued	

Leave	
hlank	

3.	A uniform lamina ABC of mass m is in the shape of an isosceles triangle with $AB = AC = 5a$ and $BC = 8a$.	
	(a) Show, using integration, that the moment of inertia of the lamina about an axis through A, parallel to BC, is $\frac{9}{2}ma^2$.	(6)
		(6)
	The foot of the perpendicular from A to BC is D . The lamina is free to rotate in a vert plane about a fixed smooth horizontal axis which passes through D and is perpendicular to the plane of the lamina. The lamina is released from rest when DA makes an angle with the downward vertical. It is given that the moment of inertia of the lamina about axis through A , perpendicular to BC and in the plane of the lamina, is $\frac{8}{3}ma^2$.	ular le α
	(b) Find the angular acceleration of the lamina when DA makes an angle θ with downward vertical.	the (8)
	Given that α is small,	
	Given that a is sman,	
	(c) find an approximate value for the period of oscillation of the lamina about vertical.	the
		(2)

	Leave blank
Question 3 continued	

	_
Leave	
LCave	
hlank	

4.	Two forces $\mathbf{F}_1 = (\mathbf{i})$ The force \mathbf{F}_1 acts through the point v	$(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$ N and $\mathbf{F}_2 = (3\mathbf{i} + \mathbf{j} + 2\mathbf{k})$ N act on a rigid body. Is through the point with position vector $(2\mathbf{i} + \mathbf{k})$ m and the force \mathbf{F} that with position vector $(\mathbf{j} + 2\mathbf{k})$ m.	'acts
	(a) If the two force	rces are equivalent to a single force ${f R}$, find	
	(i) R ,		(2)
	(ii) a vector e	equation of the line of action of $\bf R$, in the form $\bf r=a+\lambda b$.	(6)
		rces are equivalent to a single force acting through the point with point $(\mathbf{j} + \mathbf{k})$ m together with a couple of moment (\mathbf{G}) , find the magnitude of	

	Leave blank
Question 4 continued	0141111
	1

Leave	
blank	

- A raindrop falls vertically under gravity through a cloud. In a model of the motion the raindrop is assumed to be spherical at all times and the cloud is assumed to consist of stationary water particles. At time t = 0, the raindrop is at rest and has radius a. As the raindrop falls, water particles from the cloud condense onto it and the radius of the raindrop is assumed to increase at a constant rate λ . A time t the speed of the raindrop is v.
 - (a) Show that

$$\frac{\mathrm{d}v}{\mathrm{d}t} + \frac{3\lambda v}{(\lambda t + a)} = g.$$

(8)

(b) Find the speed of the raindrop when its radius is	3 <i>a</i> .
---	--------------

(7)

	Lea blar
Question 5 continued	l Diai
	•
	•
	•
	.
	.

Leave blank

6.	A uniform circular disc has mass m , centre O and radius $2a$. It is free to rotate about a fixed smooth horizontal axis L which lies in the same plane as the disc and which is tangential to the disc at the point A . The disc is hanging at rest in equilibrium with O vertically below A when it is struck at O by a particle of mass m . Immediately before the impact the particle is moving perpendicular to the plane of the disc with speed $3\sqrt{(ag)}$. The particle adheres to the disc at O .										
	(a)	Find the angular speed of the disc immediately after the impact.	(5)								
	(b)	Find the magnitude of the force exerted on the disc by the axis immediately after impact.	the								
			(6)								

	Leave blank
Question 6 continued	Olding

Examiner's use only

Team Leader's use only

Question

Leave

Centre No.					Pape	er Refer	ence			Surname	Initial(s)
Candidate No.			6	6	8	1	/	0	1	Signature	

Paper Reference(s)

6681/01

Edexcel GCE

Mechanics M5

Advanced/Advanced Subsidiary

Friday 24 June 2011 – Afternoon

Time: 1 hour 30 minutes

Materials required for examination	Items included with question paper
Mathematical Formulae (Pink)	Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer to each question in the space following the question.

Whenever a numerical value of g is required, take $g = 9.8 \text{ m s}^{-2}$.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 8 questions in this question paper. The total mark for this paper is 75.

There are 24 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance wit Edexcel Limited copyright policy. ©2011 Edexcel Limited.

Printer's Log. No. P35416A

Turn over

Total

W850/R6681/57570 5/5/5/3/3

Leave

(4)

Leave
blank

2.	A particle P moves in the x - y plane so that its position vector \mathbf{r} metres at time t seconds satisfies the differential equation			
	$\frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}t^2} - 4\mathbf{r} = -3\mathrm{e}^t\mathbf{j}$			
	When $t = 0$, the particle is at the origin and is moving with velocity $(2\mathbf{i} + \mathbf{j}) \text{ m s}^{-1}$.			
	Find \mathbf{r} in terms of t .			
	(10)			

stion 2 continued		

. A rocket propels itself by its engine ejecting burnt fuel. Initially the total mass M , of which a mass kM , $k < 1$, is fuel. The rocket is at rest when started. The burnt fuel is ejected with constant speed c , relative to the rocket, in opposite to that of the rocket's motion. Assuming that there are no external for speed of the rocket when all its fuel has been burnt.	rocket has its engine is n a direction ces, find the
	(7)

Leave	
hlank	

4.	Two forces $\mathbf{F}_1 = (3\mathbf{j} + \mathbf{k})$ N and $\mathbf{F}_2 = (4\mathbf{i} + \mathbf{j} - \mathbf{k})$ N act on a rigid body. The force \mathbf{F}_1 acts at the point with position vector $(2\mathbf{i} - \mathbf{j} + 3\mathbf{k})$ m and the force \mathbf{F}_2 acts at the point with position vector $(-3\mathbf{i} + 2\mathbf{k})$ m. The two forces are equivalent to a single force \mathbf{R} acting at the point with position vector $(\mathbf{i} + 2\mathbf{j} + \mathbf{k})$ m together with a couple of moment \mathbf{G} .				
	Find,				
	(a) R , (2)				
	(b) G. (4)				
	A third force \mathbf{F}_3 is now added to the system. The force \mathbf{F}_3 acts at the point with position vector $(2\mathbf{i} - \mathbf{k})$ m and the three forces \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_3 are equivalent to a couple.				
	(c) Find the magnitude of the couple. (6)				

Leave	
hlank	

A uniform rod PQ , of mass m and length $2a$, is made to rotate in a vertical plane with constant angular speed $\sqrt{\left(\frac{g}{a}\right)}$ about a fixed smooth horizontal axis through the end P of the rod.			
Show that, when the rod is inclined at an angle θ to the downward vertical, the magnitude of the force exerted on the axis by the rod is $2mg\left \cos\left(\frac{1}{2}\theta\right)\right $.			
	(8)		

6.	A uniform rod AB of mass $4m$ is free to rotate in a vertical plane about a fixed smooth horizontal axis, L , through A . The rod is hanging vertically at rest when it is struck at its end B by a particle of mass m . The particle is moving with speed u , in a direction which is horizontal and perpendicular to L , and after striking the rod it rebounds in the opposite direction with speed v . The coefficient of restitution between the particle and the rod is 1.
	Show that $u = 7v$. (7)

Leave
blank

7.	Prove, using integration, that the moment of inertia of a uniform solid right circular cone,
	of mass M and base radius a, about its axis is $\frac{3}{10}Ma^2$.
	[You may assume, without proof, that the moment of inertia of a uniform circular disc, of mass m and radius r , about an axis through its centre and perpendicular to its plane is
	$\frac{1}{2}mr^2.$

uestion 7 continued	b

(5)

Leave blank

- 8. A pendulum consists of a uniform rod PQ, of mass 3m and length 2a, which is rigidly fixed at its end Q to the centre of a uniform circular disc of mass m and radius a. The rod is perpendicular to the plane of the disc. The pendulum is free to rotate about a fixed smooth horizontal axis L which passes through the end P of the rod and is perpendicular to the rod.
 - (a) Show that the moment of inertia of the pendulum about L is $\frac{33}{4}ma^2$.

The pendulum is released from rest in the position where PQ makes an angle α with the downward vertical. At time t, PQ makes an angle θ with the downward vertical.

(b) Show that the angular speed, $\dot{\theta}$, of the pendulum satisfies

$$\dot{\theta}^2 = \frac{40g(\cos\theta - \cos\alpha)}{33a} \tag{4}$$

(c) Hence, or otherwise, find the angular acceleration of the pendulum. (3)

Given that $\alpha = \frac{\pi}{20}$ and that PQ has length $\frac{8}{33}$ m,

(d) find, to 3 significant figures, an approximate value for the angular speed of the pendulum 0.2 s after it has been released from rest.

estion 8 continued	

Examiner's use only

Team Leader's use only

1

Centre No.			Paper Reference					Surname	Initial(s)		
Candidate No.			6	6	8	1	/	0	1	Signature	

Paper Reference(s)

6681/01

Edexcel GCE

Mechanics M5

Advanced/Advanced Subsidiary

Monday 25 June 2012 – Afternoon

Time: 1 hour 30 minutes

Materials required for examination	Items included with question paper
Mathematical Formulae (Pink)	Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer to each question in the space following the question.

Whenever a numerical value of g is required, take $g = 9.8 \text{ m s}^{-2}$.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 7 questions in this question paper. The total mark for this paper is 75.

There are 28 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Pearson Education Ltd copyright policy.

©2012 Pearson Education Ltd.

 $\overset{\text{Printer's Log. No.}}{P40109A}$

W850/R6679/57570 5/4/5/3c

Turn over

Total

	٦
Leave	
hlank	

A particle P moves in a plane such that its position vector \mathbf{r} metres at time t seconds $(t > 0)$ satisfies the differential equation					
$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} - \frac{2}{t}\mathbf{r} = 4\mathbf{i}$					
When $t = 1$, the particle is at the point with position vector $(\mathbf{i} + \mathbf{j})$ n	n.				
Find \mathbf{r} in terms of t .	(0)				
	(9)				

Leave blank

- 2. A rocket, with initial mass 1500 kg, including 600 kg of fuel, is launched vertically upwards from rest. The rocket burns fuel at a rate of 15 kg s⁻¹ and the burnt fuel is ejected vertically downwards with a speed of 1000 m s⁻¹ relative to the rocket. At time t seconds after launch ($t \le 40$) the rocket has mass m kg and velocity v m s⁻¹.
 - (a) Show that

$$\frac{\mathrm{d}v}{\mathrm{d}t} + \frac{1000}{m} \frac{\mathrm{d}m}{\mathrm{d}t} = -9.8$$

(5)

(b)	Find	ν	at	time	t,	0	\leq	$t \leq$	40
(0)	1 1110		uı	UIIII	٠,	U	~	· <	

(5)

3.	A uniform rod PQ , of mass m and length $3a$, is free to rotate about a fixed smooth horizontal axis L , which passes through the end P of the rod and is perpendicular to the rod. The rod hangs at rest in equilibrium with Q vertically below P . One end of a light inextensible string of length $2a$ is attached to the rod at P and the other end is attached to a particle of mass $3m$. The particle is held with the string taut, and horizontal and perpendicular to L , and is then released. After colliding, the particle sticks to the rod forming a body B .	L
	and is then released. Their comains, the parties streng to the real forming a coar 2.	
	(a) Show that the moment of inertia of B about L is $15ma^2$.	
	(2)	
	(-)	
	(b) Show that <i>B</i> first comes to instantaneous rest after it has turned through an angle $\arccos\left(\frac{9}{25}\right)$.	
	(10)	

is of a uniform plane circular disc, of radius r and mass $2m$, with a particle ached to the circumference of the disc at the point P . In a diameter of the disc. The body is free to rotate in a vertical plane about a horizontal axis, L , which is perpendicular to the plane of the disc and Q . The body is held with QP making an angle β with the downward in Q , where $\sin \beta = 0.25$, and released from rest. Find the magnitude of the rependicular to PQ , of the force acting on the body at Q at the instant when					
ne that the moment of inertia of the body about L is $15mr^2$.] (6)					

Leave	
hlank	

5.	The points P and Q have position vectors $4\mathbf{i} - 6\mathbf{j} - 12\mathbf{k}$ and $2\mathbf{i} + 4\mathbf{j} + 4\mathbf{k}$ respectively, relative to a fixed origin O .
	Three forces, \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_3 , act along \overrightarrow{OP} , \overrightarrow{QO} and \overrightarrow{QP} respectively, and have magnitudes 7 N, 3 N and $3\sqrt{10}$ N respectively.
	(a) Express \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_3 in vector form.
	(3)
	(b) Show that the resultant of \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_3 is $(2\mathbf{i} - 10\mathbf{j} - 16\mathbf{k})$ N. (2)
	 (c) Find a vector equation of the line of action of this resultant, giving your answer in the form r = a + λb, where a and b are constant vectors and λ is a parameter.

uestion 5 continued		

Leave	
hlank	

6.	A uniform circular pulley, of mass $4m$ and radius r , is free to rotate about a fixed smooth horizontal axis which passes through the centre of the pulley and is perpendicular to the plane of the pulley. A light inextensible string passes over the pulley and has a particle of mass $2m$ attached to one end and a particle of mass $3m$ attached to the other end. The particles hang with the string vertical and taut on each side of the pulley. The rim of the pulley is sufficiently rough to prevent the string slipping. The system is released from rest.	biank
	(a) Find the angular acceleration of the pulley. (8)	
	When the angular speed of the pulley is Ω , the string breaks and a constant braking couple of magnitude G is applied to the pulley which brings it to rest.	
	(b) Find an expression for the angle turned through by the pulley from the instant when the string breaks to the instant when the pulley first comes to rest.(4)	

estion 6 continued	

,	2012	
	Leave blank	

7.	(a)	A uniform lamina of mass m is in the shape of a triangle ABC . The perpendic distance of C from the line AB is h . Prove, using integration, that the moment of	
		inertia of the lamina about AB is $\frac{1}{6}mh^2$.	(7)

(b) Deduce the radius of gyration of a uniform square lamina of side 2a, about a diagonal. **(3)**

The points X and Y are the mid-points of the sides RQ and RS respectively of a square PQRS of side 2a. A uniform lamina of mass M is in the shape of PQXYS.

(c)	Show that the moment of inertia of this lamina about XY is $\frac{79}{84}$ Ma ² .	(6)
		(0)

	Leave
	blank
Question 7 continued	

Centre No.				Paper Reference			Surname	Initial(s)			
Candidate No.			6	6	8	1	/	0	1 R	Signature	

Paper Reference(s)

6681/01R

Edexcel GCE

Mechanics M5

Advanced/Advanced Subsidiary

Monday 24 June 2013 – Afternoon

Time: 1 hour 30 minutes

Materials required for examination	Items included with question paper
Mathematical Formulae (Pink)	Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer to each question in the space following the question.

Whenever a numerical value of g is required, take $g = 9.8 \text{ m s}^{-2}$.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 6 questions in this question paper. The total mark for this paper is 75.

There are 24 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Pearson Education Ltd copyright policy. ©2013 Pearson Education Ltd.

 $\overset{\text{Printer's Log. No.}}{P42961A}$

W850/R6679/57570 5/5/5/

Turn over

Total

	particle moves in a plane in such a way that its position vector \mathbf{r} metres at time t secons is first the differential equation	(7)
	$\frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}t^2} - 2\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = 0$	
W	hen $t = 0$, the particle is at the origin and is moving with velocity $(4\mathbf{i} + 2\mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$.	
Fir	\mathbf{r} in terms of t .	(7)

2.	Three forces	$\mathbf{F}_1 = (3\mathbf{i} \cdot$	$-\mathbf{j}+\mathbf{k})N,\mathbf{l}$	$F_2 = (2\mathbf{i} -$	\mathbf{k}) N, and \mathbf{F}	act on a r	rigid body.
----	--------------	-------------------------------------	---------------------------------------	------------------------	------------------------------------	------------	-------------

The force \mathbf{F}_1 acts through the point with position vector $(\mathbf{i} + 2\mathbf{j} + \mathbf{k})$ m, the force \mathbf{F}_2 acts through the point with position vector $(\mathbf{i} - 2\mathbf{j})$ m and the force \mathbf{F}_3 acts through the point with position vector $(\mathbf{i} + \mathbf{j} + \mathbf{k})$ m.

Given that the system \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_3 reduces to a couple \mathbf{G} ,

(a) find **G**.

(6)

The line of action of \mathbf{F}_3 is changed so that the system \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_3 now reduces to a couple $(6\mathbf{i} + 8\mathbf{j} + 2\mathbf{k})$ N m.

(b) Find an equation of the new line of action of \mathbf{F}_3 , giving your answer in the form $\mathbf{r} = \mathbf{a} + t\mathbf{b}$, where \mathbf{a} and \mathbf{b} are constant vectors.

(5)

- 3. A spacecraft is moving in a straight line in deep space. The spacecraft moves by ejecting burnt fuel backwards at a constant speed of $2000 \,\mathrm{m\,s^{-1}}$ relative to the spacecraft. The burnt fuel is ejected at a constant rate of $c \,\mathrm{kg\,s^{-1}}$. At time $t \,\mathrm{seconds}$ the total mass of the spacecraft, including fuel, is $m \,\mathrm{kg}$ and the speed of the spacecraft is $v \,\mathrm{m\,s^{-1}}$.
 - (a) Show that, while the spacecraft is ejecting burnt fuel,

$$m\frac{\mathrm{d}v}{\mathrm{d}t} = 2000c$$

(7)

At time t = 0, the mass of the spacecraft is M_0 kg and the speed of the spacecraft is $2000 \,\mathrm{m \, s^{-1}}$. When t = 50, the spacecraft is still ejecting burnt fuel and its speed is $6000 \,\mathrm{m \, s^{-1}}$.

(b) Find c in terms of M_0 .

(7)

Show, using integration, that the moment of inertia of a uniform solid right circular cone of mass M, height h and base radius a, about an axis through the vertex, parallel to the base, is $\frac{3M}{20}(a^2+4h^2)$ [You may assume without proof that the moment of inertia of a uniform circular disc, of radius r and mass m, about a diameter is $\frac{1}{4}mr^2$.] (13)

5.

Figure 1

A uniform circular lamina has radius 2a and centre C. The points P, Q, R and S on the lamina are the vertices of a square with centre C and CP = a. Four circular discs, each of radius $\frac{a}{2}$, with centres P, Q, R and S, are removed from the lamina. The remaining lamina forms a template T, as shown in Figure 1.

The radius of gyration of T about an axis through C, perpendicular to T, is k.

(a) Show that
$$k^2 = \frac{55a^2}{24}$$
 (7)

The template T is free to rotate in a vertical plane about a fixed smooth horizontal axis which is perpendicular to T and passes through a point on its outer rim.

(b) Write down an equation of rotational motion for T and deduce that the period of small oscillations of T about its stable equilibrium position is

$$2\pi\sqrt{\left(\frac{151a}{48g}\right)}\tag{8}$$

- A uniform circular disc, of radius r and mass m, is free to rotate in a vertical plane about a fixed smooth horizontal axis L which is perpendicular to the plane of the disc and passes through a point which is $\frac{1}{4}r$ from the centre of the disc. The disc is held at rest with its centre vertically above the axis. The disc is then slightly disturbed from its rest position. You may assume without proof that the moment of inertia of the disc about L is $\frac{9mr^2}{16}$.
 - (a) Show that the angular speed of the disc when it has turned through $\frac{\pi}{2}$ is $\sqrt{\left(\frac{8g}{9r}\right)}$.
 - (b) Find the magnitude of the force exerted on the disc by the axis when the disc has turned through $\frac{\pi}{2}$.

Centre No.					Pape	er Refer	ence			Surname	Initial(s)
Candidate No.			6	6	8	1	/	0	1	Signature	

Paper Reference(s)

6681/01

Edexcel GCE

Mechanics M5

Advanced/Advanced Subsidiary

Monday 24 June 2013 – Afternoon

Time: 1 hour 30 minutes

Materials required for examination	Items included with question paper
Mathematical Formulae (Pink)	Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentation/integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer to each question in the space following the question.

Whenever a numerical value of g is required, take $g = 9.8 \text{ m s}^{-2}$.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 7 questions in this question paper. The total mark for this paper is 75.

There are 24 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Pearson Education Ltd copyright policy.

©2013 Pearson Education Ltd.

Printer's Log. No. P41823A

W850/R6681/57570 5/5/5/

Examiner's use only

Team Leader's use only

1

Turn over

Total

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} - 2\mathbf{r} = \mathbf{0}$$

given that when t = 0, $\mathbf{r} \cdot \mathbf{j} = 0$ and $\mathbf{r} \times \mathbf{j} = \mathbf{i} + \mathbf{k}$.

(7)

2. A uniform square lamina S has side 2a. The radius of gyration of S about an axis through a vertex, perpendicular to S, is k.

(a) Show that $k^2 = \frac{8a^2}{3}$.

(4)

The lamina S is free to rotate in a vertical plane about a fixed smooth horizontal axis which is perpendicular to S and passes through a vertex.

(b) By writing down an equation of rotational motion for S, find the period of small oscillations of S about its position of stable equilibrium.

(5)

3.	A raindrop falls vertically under gravity through a stationary cloud. At time $t = 0$, the raindrop is at rest and has mass m_0 . As the raindrop falls, water condenses onto it from the cloud so that the mass of the raindrop increases at a constant rate c . At time t , the mass of the raindrop is m and the speed of the raindrop is v . The resistance to the motion of the raindrop has magnitude mkv , where k is a constant. Show that
	$\frac{\mathrm{d}v}{\mathrm{d}t} + v\left(k + \frac{c}{m_0 + ct}\right) = g\tag{7}$

Three forces \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_3 act on a rigid body. The forces \mathbf{F}_1 and \mathbf{F}_2 act through the points with position vectors \mathbf{r}_1 and \mathbf{r}_2 respectively.

$$\mathbf{r}_{1} = (-2\mathbf{i} + 3\mathbf{j}) \text{ m},$$

$$\mathbf{r}_{1} = (-2\mathbf{i} + 3\mathbf{j}) \text{ m}, \qquad \mathbf{F}_{1} = (3\mathbf{i} - 2\mathbf{j} + \mathbf{k}) \text{ N}$$

$$\mathbf{r}_2 = (3\mathbf{i} + 2\mathbf{k}) \,\mathrm{m}$$

$$\mathbf{r}_2 = (3\mathbf{i} + 2\mathbf{k}) \text{ m}, \qquad \mathbf{F}_2 = (-2\mathbf{i} + \mathbf{j} - \mathbf{k}) \text{ N}$$

Given that the system \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_3 is in equilibrium,

(a) find
$$\mathbf{F}_3$$
,

(2)

(b) find a vector equation of the line of action of \mathbf{F}_3 , giving your answer in the form $\mathbf{r} = \mathbf{a} + t\mathbf{b}$.

(5)

The force \mathbf{F}_3 is replaced by a force \mathbf{F}_4 acting through the point with position vector $(\mathbf{i} - 2\mathbf{j} + 3\mathbf{k})$ m. The system \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_4 is equivalent to a single force $(3\mathbf{i} + \mathbf{j} + \mathbf{k})$ N acting through the point with position vector $(\mathbf{i} + \mathbf{j} + \mathbf{k})$ m together with a couple.

(c) Find the magnitude of this couple.

(8)

5.

Figure 1

A uniform triangular lamina ABC, of mass M, has AB = AC and BC = 2a. The mid-point of BC is D and AD = h, as shown in Figure 1.

Show, using integration, that the moment of inertia of the lamina about an axis through A, perpendicular to the plane of the lamina, is

$$\frac{M}{6} \left(a^2 + 3h^2\right)$$

[You may assume without proof that the moment of inertia of a uniform rod, of length 2l and mass m, about an axis through its midpoint and perpendicular to the rod, is $\frac{1}{3}ml^2$.]

(10)

(10)

Figure 2

A light inextensible string has a particle of mass m attached to one end and a particle of mass 4m attached to the other end. The string passes over a rough pulley which is modelled as a uniform circular disc of radius a and mass 2m, as shown in Figure 2.

The pulley can rotate in a vertical plane about a fixed horizontal axis which passes through the centre of the pulley and is perpendicular to the plane of the pulley. As the pulley rotates, a frictional couple of constant magnitude 2mga acts on it.

The system is held with the string vertical and taut on each side of the pulley and released from rest. Given that the string does not slip on the pulley, find the initial angular acceleration of the pulley.

7.	A uniform circular disc, of radius r and mass m , is free to rotate in a vertical plane about a fixed smooth horizontal axis. This axis is perpendicular to the plane of the disc and passes through a point A on the circumference of the disc. The disc is held with AB horizontal, where AB is a diameter of the disc, and released from rest.		
	(a) Find the magnitude of		
	(i) the horizontal component,		
	(ii) the vertical component		
	of the force exerted on the disc by the axis immediately after the disc is released. (11)		
	When AB is vertical the disc is instantaneously brought to rest by a horizontal impulse which acts in the plane of the disc and is applied to the disc at B .		
	(b) Find the magnitude of the impulse. (6)		

