

Mark Scheme (Final) Summer 2007

GCE

GCE Mathematics (6680/01)

June 2007 6680 Mechanics M4 Mark Scheme

General:

For M marks, correct number of terms, dimensionally correct, all terms that need resolving are resolved.

Omission of g from a resolution is an accuracy error, not a method error.

Omission of mass from a resolution is a method error.

Omission of a length from a moments equation is a method error.

Where there is only one method mark for a question or part of a question, this is for a *complete* method. Omission of units is not (usually) counted as an error.

Question Number	Scheme	Marks
1(a)	$u\cos 60^{\circ} = v\cos 30^{\circ}$ $u = v\sqrt{3}$	M1A1 A1
	$KE lost = \frac{1}{2}m(u^2 - v^2)$	M1
	Fraction of KE lost = $1 - \left(\frac{v}{u}\right)^2$	DM1
	$= 1 - \frac{1}{3} = \frac{2}{3} \text{ or at least 3sf ending in 7}$	A1 (6)
	or $\frac{3}{4}(1-e^2)$	
(b)	$e = \frac{v\sin 30^{\circ}}{u\sin 60^{\circ}}$	M1A1
	$=\frac{v}{u}\cdot\frac{1}{\sqrt{3}}$	DM1
	$=\frac{1}{3}$	A1 (4)
a)	M1 Resolve parallel to the wall	The first
	Alt: reasonable attempt at equation connecting two variables	three marks
	A1 Correct as above or equivalent equation correct	can be awarded in
	A1 u in terms of v or v.v not necessarily simplified.	(b) if not
	or ration of the two variables correct	seen in (a)
	M1 expression for KE lost	
	DM1 expression in one variable for fraction of KE lost – could be u/v as above	
	A1 cao	
b)	M1 Use NIL perpendicular to the wall and form equation in e	The first two
	A1 Correct unsimplified expression as above or $eu \sin 60^\circ = v \sin 30^\circ$ or equivalent	marks can
	DM1 Substitute values for trig functions or use relationship from (a) and rearrange	be awarded in (a)
	to e = A1 cao accept decimals to at least 3sf	in (a)

edexcel

	CUCA	<u> </u>	000
2(a)	\longrightarrow ν		
	R M F		
	$F = \frac{Ru}{v}$	B1	
	$R(\to), \frac{Ru}{v} - R = M \frac{dv}{dt}$	M1	
	$R(u-v) = Mv \frac{dv}{dt} *$	A1	(2)
(b)			(3)
(6)	$\int_{0}^{T} dt = \frac{M}{R} \int_{\frac{1}{4}U}^{\frac{1}{3}U} \frac{v dv}{u - v}$	M1A1	
	$\Rightarrow T = \frac{M}{R} \int_{\frac{1}{4}U}^{\frac{1}{3}U} -1 + \frac{u}{u - v} dv$	DM1	
	$= \frac{M}{R} \left[-v - u \ln(u - v) \right]_{\frac{1}{4}U}^{\frac{1}{3}U}$	A1	
	$= \frac{M}{R} \left[-\frac{u}{3} - u \ln\left(\frac{2u}{3}\right) + \frac{u}{4} + u \ln\left(\frac{3u}{4}\right) \right] \qquad \left(C = -\frac{Mu}{R} \left(\ln\frac{3u}{4} + \frac{1}{4}\right) \right)$	M1	
	$=\frac{Mu}{R}\left(-\frac{1}{12}+\ln\frac{9}{8}\right)$	M1	
	Hence $k = \ln \frac{9}{8} - \frac{1}{12}$	A1	(7)
			(- /
a)	B1 Correct expression involving the driving force.		
	M1 Use of F = ma to form a differential equation. Condone sign errors. a must be expressed as a derivative, but could be any valid form.		
	Al Rearrange to given form.		
b)	M1 Separate the variables		
	A1 Separation correct (limits not necessarily seen at this stage)		
	DM1 Attempt a complete integration process		
	A1 Integration correct M1 Correct use of both limits substitute and subtract. Condens wrong order		
	M1 Correct use of both limits – substitute and subtract. Condone wrong order. M1 Simplify to find k from an expression involving a logarithm		
	A1 Answer as given, or exact equivalent. Need to see $k = lnA + B$		

Question	Scheme	Marks
Number		
3. (a)	$V = -mga\cos\theta - mg(2a\cos\theta + a\sin\theta)$ $= -mga(3\cos\theta + \sin\theta) (+const) *$	M1A1A1 A1 (4)
(b)	$\frac{dV}{d\theta} = -mga(-3\sin\theta + \cos\theta)$	M1A1
	$=0 \implies \tan \theta = \frac{1}{3}$	M1
	$\Rightarrow \theta = 0.32(1)^{c} \text{ or } 18.4^{o} \text{ accept awrt}$	A1 (4)
(c)	$\frac{d^2V}{d\theta^2} = -mga(-3\cos\theta - \sin\theta)$ $= mga(3\cos\theta + \sin\theta)$	M1A1
	Hence, when $\theta = 0.32^{\circ}$, $\frac{d^2V}{d\theta^2} > 0$	M1
	i.e. stable	A1 (4)
a)	M1 Expression for the potential energy of the two rods. Condone trig errors. Condone sign errors. BC term in two parts A1 correct expression for AB A1 correct expression for BC A1 Answer as given.	
b)	M1 Attempt to differentiate V. Condone errors in signs and in constants. A1 Derivative correct M1 Set derivative = 0 and rearrange to a single trig function in θ A1 Solve for θ or M1A1 find the position of the center of mass M1A1 form and solve trig equation for θ	
c)	M1 Differentiate to obtain the second derivative A1 Derivative correct M1 Determine the sign of the second derivative A1 Correct conclusion. cso Or: M1 Find the value of $\frac{dV}{d\theta}$ on both sides of the minimum point A1 signs correct M1 Use the results to determine the nature of the turning point A1 Correct conclusion, cso.	These 4 marks are dependent on the use of derivatives

_			
4 (a)	A 60 70	Fix A $v_{min} = 15 \sin 50^{\circ}$ =11.5 km h ⁻¹ (3 s.f.) or: triangle without the right angle	M1A1 A1 (3)
	50 V	identified and $\frac{15}{\sin \theta} = \frac{v_B}{\sin 50}$	
		$\Rightarrow v_B = \frac{15\sin 50}{\sin \theta}$ minimum value $\Rightarrow \theta = 90$ for M1 As above for A1A1	
(b)		Ambiguous Sine Rule: 2 possible solutions for α	B1B1 (2)
	15 60 70 50 13		
(c)		$\frac{\sin\alpha}{15} = \frac{\sin 50}{13}$	M1A1
		$ \underline{\alpha} = 62,1^{\circ} $ (or 118°) (smaller value gives larger relative velocity)	A1
		\Rightarrow either $v = 13\cos 62.1 + 15\cos 50 = 15.72 kmh^{-1}$	M1A1
		Or $v^2 = 15^2 + 13^2 - 390\cos 67.9 = 247.27$ $v = 15.7 \text{kmh}^{-1}$	M1 A1
		Time = $\frac{20}{their15.72}$ = 1.272 hrs	M1 A1
		Earliest time is 13.16hrs or 13.17 hrs accept 1.16 (pm) or 1.17 (pm)	A1 (8)

a)	 M1 Velocity of B relative to A is in the direction of the line joining AB. Minimum V requires a right angled triangle. Convincing attempt to find the correct side. A1 15 x sin(their 50⁰) A1 Q specifies 3sf, so 11.5 only 	
b)	B1B1 Convincing argument B1B0 Argument with some merit	
c)	M1 Use of Sine Rule A1 Correct expression A1 (2 possible values,) pick the correct value. M1 Use trig. to form an equation in v A1 correct equation M1 $time = \frac{dis \tan ce}{speed}$ A1ft correct expression with their v (not necessarily evaluated) A1 correct time in hours & minutes	
	Or: M1 Use of cosine rule A1 $13^2 = 15^2 + v^2 - 2 \times 15 \times v \times \cos 50$ A1 (Award after the next two marks) 15.72 or awrt 15.72 M1 Attempt to solve the equation for v $ \frac{30\cos 50 \pm \sqrt{(30\cos 50)^2 - 4 \times 56}}{2} $ (15.72 or 3.562) Finish as above	

a) M1 Conservation of momentum along the line of centres. Condone sign errors

A1 equation correct

M1 Impact law along the line of centres.

e must be used correctly, but condone sign errors.

A1 equation correct. The signs need to be consistent between the two equations

M1 Solve the simultaneous equations for their v_1 and v_2 .

A1 **i** components correct – independent mark

A1 **v**_A & **v**_B correct

b) M1 Impulse = change in momentum for one sphere. Condone order of subtraction.

A1 Magnitude correct.

c) M1 Any complete method to find the trig ratio of a relevant angle.

A1 $\cos \theta = \frac{4}{5}$, $\tan \frac{\theta}{2} = \frac{1}{3}$, ...

Or M1 find angle of approach to the line of centres and angle after collision.

A1 values correct. (both 71.56)

M1 solve for θ

A1 37⁰ (Q specifies nearest degree)

Special case: candidates who act as if the line of centres is in the direction of i:

CLM u+2v=8

NIL v-u=2

u=4/3, v=10/3

4/3i + j; 10/3i - j

Impulse 2m-4/3m = 2/3m

$$\frac{10+1}{\sqrt{10}\sqrt{\frac{109}{9}}} = \cos\theta \qquad \theta = 1.70^0$$

Work is equivalent, so treat as a MR:

M1A0M1A0M1A1A1 M1A1 M1A1M1A1

6 (0)	<u> </u>	
6 (a)	A The second se	M1 A1
	$\Rightarrow 0.5(orl) + 0.2 + y = 2\sin 2t + 0.5(orl) + x$ $\Rightarrow 0.2 + y = 2\sin 2t + x *$	B1 (3)
(b)	v accn. $0.1g - T = 0.1\ddot{y}$	M*1
(5)	$R(\downarrow) \qquad 0.1g - \frac{2.45x}{0.5} = 0.1\ddot{y}$	M1
	$0.98 - 4.9(0.2 + y - 2\sin 2t) = 0.1\ddot{y}$ $(-4.9y + 9.8\sin 2t = 0.1\ddot{y})$	DM*1A1
	$\Rightarrow \frac{d^2y}{dt^2} + 49y = 98\sin 2t *$	A1 cso (5)
(c)	CF is $y = A\cos 7t + B\sin 7t$	M1
	Hence GS is $y = A\cos 7t + B\sin 7t + \frac{98}{45}\sin 2t$	A1
	$t = 0, y = 0$: $0 = A$ so, $y = B \sin 7t + \frac{98}{45} \sin 2t$	B1
	$\dot{y} = 7B\cos 7t + \frac{196}{45}\cos 2t$	M1
	$t = 0, \ \dot{y} = 0:0 = 7B + \frac{196}{45} \qquad \Rightarrow B = -\frac{28}{45}$ $\Rightarrow y = \frac{14}{45}(7\sin 2t - 2\sin 7t)$	A1 (5)
(d)	$\dot{y} = \frac{14}{45} (14\cos 2t - 14\cos 7t)$	B1
	$\dot{y} = 0 \Rightarrow \cos 2t = \cos 7t$ $\Rightarrow 7t = 2k\pi \pm 2t$	M1 M1
	$k=1 \Rightarrow 9t = 2\pi (\text{or } 5t=2\pi)$	A1
	$t = \frac{2\pi}{9}$, accept 0.698s, 0.70s.	(4)

a) M1 Hooke's law to find extension at equilibrium

A1 cao

B1 Q specifies reference to a diagram. Correct reasoning leading to given answer.

b) M1 Use of F=ma. Weight, tension and acceleration. Condone sign errors.

M1 Substitute for tension in terms of x

M1 Use given result to substitute for x in terms of y

A1 Correct unsimplified equation

A1 Rearrange to given form cso.

c) M1 Correct form for CF

A1 GS for y correct

B1 Deduce coefficient of $\cos \theta = 0$

M1 Differentiate their y and substitue t=0, $\dot{y} = 0$

A1 y in terms of t. Any exact equivalent.

d) B1 \dot{y} correct

M1 set $\dot{y} = 0$

M1 solve for general solution for t: $7t = 2k\pi \pm 2t$

or:
$$\sin \frac{9t}{2} \times \sin \frac{5t}{2} = 0 \Rightarrow \sin \frac{9t}{2} = 0 \text{ or } \sin \frac{5t}{2} = 0$$

A1 Select smallest value