

Chapter review

1 a Let the density of the solid be ρ .

Shape	Mass	Mass ratios	Distance of centre of mass from C
Cylinder	$\pi \rho r^2 \times kr$	k	$-\frac{kr}{2}$
Hemisphere	$\frac{2}{3}\pi\rho r^3$	$\frac{2}{3}$	$\frac{3}{8}r$
Composite body	$\pi\rho r^3\left(k+\frac{2}{3}\right)$	$k+\frac{2}{3}$	0

$$\mathcal{O}M \text{ (about } C\text{)}: k \times \left(-\frac{kr}{2}\right) + \frac{2}{3} \times \frac{3}{8}r = 0$$
$$\therefore \frac{k^2r}{2} = \frac{r}{4}$$
$$\therefore k^2 = \frac{1}{2} \Longrightarrow k = \frac{1}{\sqrt{2}} = 0.707 \text{ (3 s.f.)}$$

b The centre of mass of the body is at *C* which is always directly above the contact point.

$$2 \quad \mathbf{a} \quad \overline{y} = \frac{\rho \int \frac{1}{2} y^2 dx}{\rho \int y dx} = \frac{\frac{1}{2} \int_0^4 \frac{x^2}{16} (16 - 8x + x^2) dx}{\frac{1}{4} \int_0^4 4x - x^2 dx}$$
$$= \frac{\frac{1}{2} \int_0^4 x^2 - \frac{1}{2} x^3 + \frac{1}{16} x^4 dx}{\frac{1}{4} \left[2x^2 - \frac{1}{3} x^3 \right]_0^4}$$
$$= 2 \frac{\left[\frac{1}{3} x^3 - \frac{1}{8} x^4 + \frac{1}{80} x^5 \right]_0^4}{32 - \frac{64}{3}}$$
$$= \frac{6}{32} \left[\frac{64}{3} - 32 + \frac{64}{5} \right]$$
$$= \frac{6}{32} \times \frac{32}{15}$$
$$= \frac{6}{15} = \frac{2}{5}$$

When P is about to topple the centre of mass G directly above the lower edge of the prism S.

Take the diameter as the *y*-axis and the midpoint of the diameter as the origin.

Pearson

Then
$$M\overline{x} = \rho \int 2yx \, dx$$
 where
 $M = \frac{1}{2}\rho \pi (2a^2)$ and where $x^2 + y^2 = (2a)^2$
 $\therefore 2\rho \pi \alpha^2 \overline{x} = \rho \int_0^{2a} 2x\sqrt{4a^2 - x^2} \, dx$
 $= \frac{-2\rho}{3} \left[\left(4a^2 - x^2\right)^{\frac{3}{2}} \right]_0^{2a}$

$$\therefore 2\rho\pi a^2 \overline{x} = \frac{2\rho}{3} \times 8a^3$$
$$\therefore \overline{x} = \frac{16}{3}a^3 \div 2\pi a^2$$
$$= \frac{8a}{3\pi}$$

b

Shape	Mass	Mass ratios	Centre of mass (distance from <i>AB</i>)
Large semicircle	$2\pi\rho a^2$	4	$\frac{8a}{3\pi}$
Semicircle diameter AD	$\frac{1}{2}\pi\rho a^2$	1	$\frac{4a}{3\pi}$
Semicircle diameter <i>OB</i>	$\frac{1}{2}\pi\rho a^2$	1	$\frac{4a}{3\pi}$
Remainder	$\pi ho a^2$	2	\overline{x}

$$\bigcirc MO: 4 \times \frac{8a}{3\pi} - 1 \times \frac{4a}{3\pi} - 1 \times \frac{4a}{3\pi} = 2\overline{x}$$
$$\therefore \frac{24a}{3\pi} = 2\overline{x}$$
$$\therefore \overline{x} = \frac{4a}{\pi}$$

3 c The distance from OC is a

A

The distance from *OB* is $\frac{2a}{\pi}$

Let N be the foot of the perpendicular from G onto AB. In the diagram θ is the angle between AB and the vertical. From $\triangle ANG$

P Pearson

 \therefore The angle between AB and the horizontal is $90-12 = 78^{\circ}$ (to the nearest degree)

4 a

b

d

Shape	Mass	Mass ratios	Distance of centre of mass from <i>O</i>
Cylinder	$\pi ho r^2 h$	h	$-\frac{h}{2}$
Hemisphere	$\frac{2}{3}\pi\rho(3r)^3$	18 <i>r</i>	$\frac{3}{8}(3r)$
Mushroom	$\pi\rho r^2(h+18r)$	h + 18r	0

$$\mathcal{O}\mathbf{M}(O): -h \times \frac{h}{2} + 18r \times \frac{3}{8} \times 3r = 0$$
$$\therefore \frac{h^2}{2} = \frac{81r^2}{4}$$
$$\therefore h = r\sqrt{\frac{81}{2}}$$

When the mushroom is about to topple GS is vertical.

From the diagram
$$\tan \theta = \frac{r}{h}$$
$$= \sqrt{\frac{2}{81}}$$

 $\therefore \theta = 9^{\circ}$ (nearest degree)

Mechanics 3

Solution Bank

5 a
$$V = \pi \int y^2 dx$$

 $= \pi \int_0^a 4ax dx$
 $= \pi [2ax^2]_0^a$
 $= 2\pi a^3$
b $\overline{x} = \frac{\pi \int xy^2 dx}{\pi \int y^2 dx}$
 $= \frac{\pi \int_0^a 4ax^2 dx}{2\pi a^3}$
 $= \pi \frac{\left[\frac{4ax^3}{3}\right]_0^a}{2\pi a^3}$
 $= \frac{\frac{4}{3}\pi ax^4}{2\pi a^3}$
 $= \frac{2}{3}a$

c

Shape	Mass	Mass ratios	Distance of centre of mass from X
S_1	$2\pi\rho a^3$	$ ho_{1}$	$-\frac{a}{3}$
S_2	$\frac{2}{3}\pi\rho_2(2a)^3$	$\frac{8}{3} ho_2$	$\frac{3}{8}(2a)$
Combined solid	$2\pi a^3(\rho_1+\frac{8}{3}\rho_2)$	$\rho_1 + \frac{8}{3}\rho_2$	0

X is the centre of the common plane base.

OM(X):

$$-\rho_1 \times \frac{a}{3} + \frac{8}{3}\rho_2 \times \frac{6a}{8} = 0$$
$$\therefore \frac{1}{3}\rho_1 = 2\rho_2$$
$$\therefore \rho_1 = 6\rho_2$$
$$\rho_1 : \rho_2 = 6:1$$

d Given that $\rho_1: \rho_2 = 6:1$, then as centre of mass is at centre of hemisphere this will always be above the point of contact with the plane when a point of the curved surface area of the hemisphere is in contact with a horizontal plane. (Tangent – radius property)

Mechanics 3

6

Solution Bank

a	Shape	Mass	Mass ratios	Distance of centre of mass from <i>AB</i>
	Cylinder	$\pi\rho(2r)^2 \times 3r$	12 <i>r</i>	$\frac{3r}{2}$
	Cone	$\frac{1}{3}\pi\rho r^2 \times h$	$\frac{1}{3}h$	$\frac{1}{4}h$
	Remainder	$\pi\rho(12r^3-\frac{1}{3}r^3h)$	$12r - \frac{1}{3}h$	\overline{x}

$$\mathfrak{O}:\left(12r - \frac{1}{3}h\right)\overline{x} = 12r \times \frac{3r}{2} - \frac{1}{3}h \times \frac{1}{4}h$$
$$\therefore \left(12r - \frac{1}{3}h\right)\overline{x} = 18r^2 - \frac{1}{12}h^2$$
$$\therefore \overline{x} = \frac{18r^2 - \frac{1}{12}h^2}{12r - \frac{1}{3}h}$$

Multiply numerator and denominator by 12

7 a First find the centre of mass of the frustum. The centre of mass of the full cone is $\frac{1}{4}h$ from its base, on the symmetry axis. Here *h* is the height of the full cone, which can be found using similar triangles $\frac{10}{h} = \frac{5}{h-30} \Rightarrow h = 60$ cm. Now taking moments about the base of the cone $\frac{1}{3}\pi 10^2h \times \frac{1}{4}h - \frac{1}{3}\pi 5^2(h-30) \times \left(\frac{1}{4}h - \frac{1}{4}30 + 30\right)$ $= \frac{1}{3}\pi \left(10^2h - 5^2(h-30)\right)\overline{x} \Rightarrow \overline{x} = \frac{165}{14}$ cm. Now take moments about the centre of the common plane of the frustum and the solid hemisphere $\frac{1}{3}\pi\rho \left(10^2 \times 60 - 5^2 \times 30\right)\overline{x} - 3\rho \frac{2}{3}\pi 10^3 \times \frac{3}{8} \times 10 =$ $\left(\frac{1}{3}\pi\rho \left(10^2 \times 60 - 5^2 \times 30\right) + 3\rho \frac{2}{3}\pi 10^3\right)\overline{X} \Rightarrow \overline{X} = 3.5$ cm below their common plane. Thus, the centre of mass of the compound solid is 26.5 cm from its base.

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free.

P Pearson

There are three forces acting on the body, namely \vec{F} , \vec{N} and \vec{mg} . At the point of toppling, the reaction force is acting through the point *P*. It is easiest to decompose the forces into directions parallel and normal to the plane $F \sin 45^\circ \times 40 + F \cos 45^\circ \times 5 + mg \cos 45^\circ \times 5 = mg \sin 45^\circ \times 26.5$

$$\frac{mg}{\sqrt{2}} \times 5 + \frac{F}{\sqrt{2}} \times 5 + \frac{F}{\sqrt{2}} \times 40 = \frac{mg}{\sqrt{2}} \times 26.5 \implies F = \frac{26.5 - 5}{40 + 5} mg \approx 0.478 mg \ (3 \text{ s.f.})$$

8 a The mass is $M = \rho \int_{2}^{4} \pi y^{2} dx = \rho \int_{2}^{4} \pi \left(\frac{2}{x+3}\right)^{2} dx$ = $4\pi\rho \left[-\frac{1}{x+3}\right]_{2}^{4} = \frac{8}{35}\pi\rho$

The centre of mass $M \overline{x} = \rho \int_2^4 \pi x y^2 dx = 4\rho \int_2^4 \pi \frac{x}{(x+3)^2} dx$

$$= 4\rho\pi \int_{2}^{4} \frac{x}{(x+3)^{2}} dx$$

= $4\rho\pi \int_{2}^{4} \left(\frac{1}{x+3} - \frac{3}{(x+3)^{2}}\right) dx$
= $4\rho\pi \left[\left[\ln(x+3)\right]_{2}^{4} - 3\int_{2}^{4} \frac{1}{(x+3)^{2}} dx \right]$
= $4\rho\pi \left[\ln(x+3) + \frac{3}{x+3}\right]_{2}^{4}$
= $4\rho\pi \left(-\frac{6}{35} + \ln\frac{7}{5}\right) \Rightarrow \overline{x} \approx 2.89.$

Thus, the centre of mass of the solid above the ground is 1.11.

b The radius of the smaller circular end is $y(x = 4) = \frac{2}{7}$ The angle at the point of tipping is $\tan \theta = \frac{\frac{2}{7}}{4 - \overline{x}} \approx 0.2570 \Longrightarrow \theta = 14.4^{\circ}$ (3 s.f.).

Challenge

a Let the mass per unit volume of the solids be ρ . Let *O* be the centre of the plane circular faces which coincide.

Shape	Mass	Ratio of masses	Distance of centre of mass from <i>O</i>
Cone	$\frac{1}{3}\pi\rho r^2h$	h	$\frac{h}{4}$
Hemisphere	$\frac{2}{3}\pi\rho r^{3}$	2r	$\frac{-3r}{8}$
Тоу	$\frac{1}{3}\pi\rho\left(r^2h+2r^3\right)$	h + 2r	\overline{x}
$\overline{5O(h+2r)\overline{x}-h} \begin{pmatrix} h \\ -2r \end{pmatrix} (-3r)$			

$$5O(h+2r)\overline{x} = h \times \frac{h}{4} + 2r\left(\frac{-3r}{8}\right)$$
$$= \frac{h^2}{4} - \frac{3r^2}{4}$$
$$\therefore \overline{x} = \frac{\left(h^2 - 3r^2\right)}{4\left(h+2r\right)}$$

- **b** i If $h > r\sqrt{3}$ then $\overline{x} > 0$ so the centre of mass is in the cone the cone will fall over.
 - ii If $h < r\sqrt{3}$ then $\overline{x} < 0$ so the centre of mass is in the hemisphere, the toy will return to vertical position.
 - iii If $h = r\sqrt{3}$, then $\overline{x} = 0$ so the centre of mass is on the join at point *O*. The toy will remain in equilibrium in its new position.