Mechanics 3 Solution Bank

Exercise 6B

Let the maximum height be h cm. The cylinder is about to topple and so its centre of mass G is directly above the point S on the circumference of the base. X is the midpoint of the base.

As $\alpha + 40^\circ = 90^\circ, \alpha = 50^\circ$.

In ΔGSX , SX = 2 cm (radius)

$$GX = \frac{h}{1} \text{(position of centre of mass)}$$

$$\therefore \tan 50^\circ = \frac{h}{2}$$

$$\therefore h = 4 \tan 50^\circ$$

$$\therefore h = 4.77 \text{ cm}(3 \text{ s.f.})$$

a When the cylinder is about to topple, *G* is vertically above point *S*. *X* is the midpoint of the base. Let α be the angle which the plane makes with the horizontal.

In triangle GSX, $\hat{SGX} = \alpha$

$$GX = \frac{1}{2} \times 10 \text{ cm} = 5 \text{ cm} \text{ (position of centre of mass)}$$

$$SX = 3 \text{ cm} \quad (\text{radius})$$

$$\therefore \tan \alpha = \frac{3}{5}$$

i.e. $\alpha = 31^{\circ}$ (to the nearest degree)

b The equilibrium is maintained if $\tan \theta = \frac{3}{5}$. At the point of slipping, $F = \mu R$, where *F* is frictional force, *R* reactive force and μ is the coefficient of friction. Resolving forces in the direction orthogonal to the plane $R - Mg \cos \theta = 0$, and parallel to the plane $F - Mg \sin \theta = 0$. These two conditions imply that $\mu = \tan \theta$ at the point of slipping. Hence $\mu = \frac{3}{5}$.

Mechanics 3

Solution Bank

a When the cone is about to slide $F = \mu R$

i.e.
$$F = \frac{\sqrt{3}}{3}R$$
 (1)

R (↗):

Then $F - mg\sin\theta = 0$ $\therefore F = Mg\sin\theta$ (2)

R (∿):

Then $R - Mg \cos \theta = 0$ $\therefore R = Mg \cos \theta$ (3)

Substituting F and R into equation (1)

Then
$$Mg\sin\theta = \frac{\sqrt{3}}{3}Mg\cos\theta$$

 $\therefore \tan\theta = \frac{\sqrt{3}}{3}$
 $\therefore \quad \theta = 30^{\circ}$

b From $\triangle GSX$, where G is the centre of mass of the cone, X the centre of its base and S a point on the circumference of the base about which topping is about to occur:

$$\tan \theta = \frac{5}{\frac{h}{4}} = \frac{20}{h}$$

$$\therefore \quad h = \frac{20}{\tan \theta} = 20 \div \frac{\sqrt{3}}{3} = 20\sqrt{3} = 35 \text{ cm } (2 \text{ s.f.})$$

P Pearson

Mechanics 3

4 a

Solution Bank

Let the point about which toppling occurs be A.

Take moments about point A.

When toppling is about to occur, R and F act through point A.

So $P \cos 60 \times 2r + P \sin 60 \times r = Mg \times r$

$$\therefore Pr + \frac{P\sqrt{3}}{2}r = Mgr$$
$$\therefore P\left(1 + \frac{\sqrt{3}}{2}\right) = Mg$$

So
$$P = \frac{2Mg}{2+\sqrt{3}}$$

b $R(\rightarrow)$:

 $P\cos 60^\circ - F = 0$

$$F = \frac{Mg}{2 + \sqrt{3}}$$

$$R(\uparrow):$$

$$P\sin 60^\circ + R - Mg = 0$$

$$\therefore R = Mg - \frac{Mg\sqrt{3}}{2+\sqrt{3}} = \frac{2Mg}{2+\sqrt{3}}$$

As the cone is on the point of slipping, $F = \mu R$

$$\therefore \mu = F \div R = \frac{1}{2}$$

i.e. the coefficient of friction $\mu = \frac{1}{2}$

P Pearson

Mechanics 3

Solution Bank

5 a

Let the height of the small cone shown be *h*. Using similar triangles

$$\frac{h}{h+2r} = \frac{r}{2r}$$
$$\therefore 2h = h+2r$$
$$\therefore h = 2r$$

Shape	Mass	Ratio of masses	Distance of centre of mass from X
Large cone	$\rho \frac{1}{3}\pi (2r)^2 (4r)$	8	ľ
Small cone	$\rho \frac{1}{3} \pi r^2 \times 2r$	1	$2r + \frac{2r}{4} = \frac{5r}{2}$
Frustum	$\rho \frac{1}{3}\pi \times 14r^3$	7	\overline{x}

Take moment about X:

$$8r - \frac{5r}{2} = 7\overline{x}$$
$$\therefore \overline{x} = \frac{11r}{14}$$

b i

Let G be the position of the centre of mass. Let S be the point an the plane vertically below G. Let X be the centre of the circular face with radius 2r and A be the point about which tilting would occur.

If SX < AX then the solid rests in equilibrium without toppling

Let SX = y.

Then $\tan 40^\circ = \frac{y}{\frac{11r}{14}}$

$$\therefore y = \frac{11r}{14} \tan 40^\circ = 0.66r \ (2 \,\text{s.f.})$$

As SX = 0.66r and AX = 2r, we have

SX < AX and the solid rests without toppling

Mechanics 3

Solution Bank

5 b ii

c

This time Y is vertically below G. Z is the centre of the circular face and B is the point about which toppling would occur.

If YZ > BZ then toppling occurs.

Let
$$YZ = z$$

Then $\tan 40^\circ = \frac{z}{\frac{17r}{14}}$
 $\therefore z = \frac{17r}{14} \tan 40^\circ = 1.02r$

As YZ = 1.02r and BZ = r

YZ > BZ and toppling would occur.

As the angle of slope is 40° limiting friction would imply $\mu = \tan 40^\circ$. No slipping implies $\mu \ge 0.839$ (3 s.f.)

6

Mechanics 3 Solution Bank

a Consider the cube in equilibrium, on the point of toppling, so *R* acts through the corner *A*.

 $R(\rightarrow): P - F = 0 \therefore F = P$ $R(\uparrow): R - W = 0 \therefore R = W$ $\bigcirc M(A): P \times 4a = W \times 3a$ $\therefore P = \frac{3}{4}W$

If equilibrium is broken by toppling $P = \frac{3}{4}W$, so $F = \frac{3}{4}W$

But $F < \mu R$

 $\therefore \frac{3}{4}W < \mu W \text{ so } \mu > \frac{3}{4} \text{ is the condition for toppling.}$

If however, $\mu < \frac{3}{4}$ then the cube will be on the point of slipping when $F = \mu R$ i.e. when $P = \mu W$ the cube will start to slip.

b Let R act at a point x from A.

The required distance is 2a.

Mechanics 3 Solution Bank

Given that k = 5, $M_A = 20 \times 20 \times 30 \times \rho = 12 \times 10^3 \rho$ and $M_B = 20 \times 20 \times 30 \times 5\rho = 60 \times 10^3 \rho$, $\overline{y} = \frac{115}{6} \approx 19.2 \,\mathrm{cm}, \ \overline{x} = \frac{65}{6} \approx 10.8 \,\mathrm{cm}.$ The angle is $\tan \theta = \frac{20 - \overline{x}}{\overline{y}} = \frac{1 + 2k}{8 + 3k}$ $=\frac{11}{23}\approx 0.478 \Longrightarrow \theta \approx 25.6^{\circ} (3 \text{ s.f.}).$

- **b** We have that $\tan \theta = \frac{1+2k}{8+3k}$ For the cuboid A to topple, $\tan \theta = \frac{20 - 15}{10} = \frac{1}{2}$ Solving $\frac{1+2k}{8+3k} < \frac{1}{2} \Rightarrow 0 < k < 6$
- 8 a Let the mass per unit volume be ρ .

Shape	Mass	Mass ratio	Position of centre of mass – distance from <i>O</i>
Large cone	$\frac{1}{3}\pi\rho\left(2r\right)^{2}2h$	8	$\frac{2h}{4}$
Small cone	$\frac{1}{3}\pi\rho r^2h$	1	$h + \frac{h}{4}$
Frustum	$\frac{1}{3}\pi\rho\left(8r^2h-r^2h\right)$	7	\overline{x}

The centre of the base is the point *O*.

The radius of the small cone is obtained by singular triangles.

$$\bigcirc MO: 8 \times \frac{2h}{4} - 1 \times \frac{5h}{4} = 7\overline{x}$$
$$\therefore \frac{11h}{4} = 7\overline{x}$$
i.e. $\overline{x} = \frac{11}{28}h$

Mechanics 3 Solution Bank

8 **b** As
$$OG = \frac{11h}{28}$$
, $GX = h - \frac{11h}{28}$
 $= \frac{17h}{28}$

From $\Delta SGXS$ and VXS shown:

$$\tan \theta = \frac{\frac{17h}{28}}{r} \text{ and } \tan \theta = \frac{r}{h}$$

Eliminating r, $h \tan \theta = \frac{\frac{17h}{28}}{\tan \theta}$

$$h \tan \theta = \frac{\frac{17h}{28}}{\tan \theta}$$
$$\therefore \tan^2 \theta = \frac{17}{28}$$
$$\therefore \theta = 38^\circ \text{ (nearest degree)}$$

- **9** a At the point of sliding, the frictional force $F = \mu R$, where R is the reaction force. Resolving forces in the direction normal to the plane R = Mg, and horizontally P = F. From this we can find that $P > \mu Mg$.
 - **b** Taking moments about the point of contact with the plane, when the cone is just about to tilt $Mgr = Ph \Rightarrow P > \frac{r}{h}Mg = \frac{3}{8}Mg.$
 - **c** i The force required for the cone to tilt is greater than the one for it to slide. For $\mu = \frac{1}{4}$ the cone will slide.
 - ii For $\mu = \frac{1}{2}$ the cone will tilt.

iii For $\mu = \frac{3}{8}$ the cone will remain stationary, perfectly balanced between the opposing forces, as the force $P = \frac{3}{8}Mg$ is not sufficient to cause the cone to either tilt or topple, both of which require $P > \frac{3}{8}Mg$.

10 a Let the mass of the cylinder be M, height h, and radius r. Suppose the cylinder is about to topple. Taking moments about the highest point of the base O, $Ph \cos \alpha = Mgx$, where x is the shortest distance between the force Mg and the point O. We can find it using similar triangles

$$\tan \alpha = \frac{y}{h/2} = \frac{\sqrt{(y+r)^2 - x^2}}{x} \Rightarrow y = \frac{1}{2}h \tan \alpha = \frac{1}{2} \times 4 \times \frac{3}{4} = 1.5 \text{ cm}, \text{ and } x = 3.6 \text{ cm}. \text{ Also note that}$$
$$\tan \alpha = \frac{3}{4} \Rightarrow \sin \alpha = \frac{3}{5}, \cos \alpha = \frac{4}{5}. \text{ Thus } P = (\cos \alpha)^{-1} \frac{x}{h} Mg = \frac{5}{4} \times \frac{3.6}{4} \times 0.2 \times g = \frac{9}{40}g \text{ N}.$$

Mechanics 3 Solution Bank

10 b Resolving forces horizontally to the plane (at the point of slipping) $P \cos \alpha = Mg \sin \alpha + \mu R$, and

vertically $R - P \sin \alpha = Mg \cos \alpha$. Hence $P = \frac{gM(3+4\mu)}{4-3\mu} = \frac{3}{10}g$ N.

c As $\frac{3}{10}g > \frac{9}{40}g$ the cylinder topples before it slides.