Mechanics 3

Solution Bank

Chapter review

$$
R(\text{TR}\cos\theta) = mg
$$

\n
$$
R(\leftrightarrow)R\sin\theta = \frac{mv^2}{r} = \frac{2mu^2}{3a}
$$

\nDividing $\Rightarrow \tan\theta = \frac{2u^2}{3ag}$, but
\n
$$
\tan\theta = \frac{\frac{3a}{2}}{\frac{\sqrt{7}a}{2}} = \frac{3}{\sqrt{7}}
$$
, so
\n
$$
\frac{2u^2}{3ag} = \frac{3}{\sqrt{7}}, 9ag = 2\sqrt{7}u^2
$$

 T is the tension in the string, and θ is the $a_1 \rightarrow a_2$ angle between the string and the vertical. Right-angled triangle so

$$
OP = a\sqrt{8}
$$

R(\leftarrow): $T \sin \theta = \frac{mv^2}{a\sqrt{8}}$

$$
T \frac{\sqrt{8}a}{3a} = \frac{m \times 4ga}{a\sqrt{8}}
$$

$$
\Rightarrow T = \frac{3mg}{2}
$$

b
$$
R(\uparrow)
$$
: $T \cos \theta + N = mg \Rightarrow N = mg - \frac{3}{2}mg \times \frac{1}{3} = \frac{1}{2}mg$

We have a 5, 12, 13 triangle.

$$
R(\text{I}): T \cos \theta = mg
$$

$$
T = \frac{mg}{\cos \theta} = \frac{13mg}{5}
$$

b
$$
R(\leftrightarrow): T + T \sin \theta = \frac{mv^2}{r} \Rightarrow T\left(1 + \frac{12}{13}\right) = \frac{mv^2}{12l}, \frac{25}{13} \times \frac{13mg}{5} = 5mg = \frac{mv^2}{12l}
$$

 $\Rightarrow v^2 = 60gl, v = \sqrt{60gl} \text{ m s}^{-1}$

Mechanics 3

Solution Bank

4 *R* is the normal reaction of the surface on the car. No friction.

tan12

$$
R(\text{I}): R \cos 12^\circ = mg
$$

\n
$$
R(\leftrightarrow): R \sin 12^\circ = \frac{mv^2}{r} = \frac{m \times 15^2}{r}
$$

\nDividing: $\tan 12^\circ = \frac{225}{gr}$
\n
$$
r = \frac{225}{g \tan 12^\circ} \approx 108 \text{ m}
$$

5 a
$$
\frac{1}{2} \int_{\frac{1}{2}l}^{600}
$$

 T is the tension in AP and S is the tension in BP . The triangle is equilateral (3 equal sides).

$$
R(\textcircled{x}): T \cos 60^\circ = mg + S \cos 60^\circ
$$

\n
$$
T - S = 2mg
$$

\n
$$
R(\leftrightarrow): T \cos 30^\circ + S \cos 30^\circ = mr\omega^2
$$

\n
$$
(T + S) \cos 30^\circ = ml \cos 30^\circ \times \omega^2
$$

\n
$$
T + S = ml\omega^2
$$

Adding these two equations gives

$$
2T = 2mg + ml\omega^2, T = \frac{m}{2}(2g + l\omega^2).
$$

b $S = T - 2mg = -\frac{m}{2}(l\omega^2 - 2g)$ 2 $S = T - 2mg = \frac{m}{2}(l\omega^2 - 2g)$

c Both strings taut
$$
\Rightarrow l\omega^2 - 2g > 0
$$
, $\omega^2 > \frac{2g}{l}$

$$
R(\mathbb{C}) : T \cos 45^\circ = mg, T = \sqrt{2mg}
$$

b $R(\leftrightarrow): T \cos 45^\circ = m r \omega^2 = m l \cos 45^\circ \omega^2$, $T = m l \omega^2$, $\omega = \sqrt{\frac{T}{l}} = \sqrt{\frac{g \sqrt{2}}{l}}$ *ml l* \leftrightarrow): $T \cos 45^\circ = m r \omega^2 = m l \cos 45^\circ \omega^2$, $T = m l \omega^2$, $\omega = \sqrt{\frac{L}{m}} =$

Mechanics 3

7 a $A_{\mathbf{A}}$ *r* is the radius of the circle, *T* is the tension in the string and $\angle OAP$ is θ . From the triangle, $r = 1.2 \sin \theta$.
1.2 m $R(\leftrightarrow)$: *T* sin $\theta = mr\omega^2 = 0.6 \times 1.2 \sin \theta \times 9$ $T = 0.6 \times 1.2 \times 9 = 6.48$ N

b R(1): $T \cos \theta = mg$, 6.48 $\cos \theta = 0.6g$, $\cos \theta = \frac{0.6g}{6.68} \approx 0.907$, $\theta \approx 25$ 6.48 $\hat{}$ \downarrow): *T* cos θ = mg, 6.48 cos θ = 0.6g, cos θ = $\frac{0.6g}{0.48} \approx 0.907$, $\theta \approx 25^{\circ}$

Solution Bank

the vertical is θ .

P Pearson

$$
R(\mathbb{Q}): R\cos\theta = mg, R = 4mg \text{ N}.
$$

b
$$
R(\leftrightarrow): R \sin \theta = mr\omega^2 = m \times r \sin \theta \times \omega^2, \ \omega = \sqrt{\frac{4mg}{mr}} = \sqrt{\frac{4g}{r}}
$$

Three revolutions is 6π radians, time taken $=$ $\frac{6\pi}{\sqrt{4g}}$ = 3π *r r g* $=\frac{6\pi}{\sqrt{4}}=3\pi\sqrt{6}$ s.

$$
9 \text{ a } \frac{mv^2}{r} = \mu R = \mu mg
$$

$$
\frac{v^2}{rg} = \mu
$$

$$
\frac{21^2}{100 \times 9.8} = \mu
$$

$$
\mu = 0.45
$$

b
$$
\tan \alpha = \frac{35}{136}
$$

Mechanics 3 Solution Bank

10 a $\frac{\sqrt{3m}}{4}(r\omega^2 + 2g)N$ 4 $\frac{m}{2}$ $(r\omega^2 + 2g)$ N

 b Maximum speed gives the shortest time. At the maximum speed with the rod still on the surface of the sphere, $R = 0$.

P Pearson

Radius of the circle is
$$
\frac{\sqrt{3}r}{2}
$$

\nWhen $R = 0$, $T \cos \alpha = mg$
\n $\Rightarrow T = \frac{mg}{\cos \alpha} = \frac{2mg}{\sqrt{3}}$
\n $T \sin \alpha = m \times \frac{\sqrt{3}r}{2} = \omega^2$
\nso $\frac{2mg}{\sqrt{3}} \times \frac{1}{2} = m \times \frac{\sqrt{3}r}{2} = \omega^2$
\n $\omega^2 = \frac{\sqrt{2g}}{3r}$

Time for one revolution $=\frac{2\pi}{\omega}$

$$
= \pi \sqrt{\frac{4 \times 3r}{2g}}
$$

$$
= \pi \sqrt{\frac{6r}{g}}
$$

- **c i** The minimum period decreases.
	- **ii** The minimum period increases.

R is the normal reaction.

$$
R(\mathbb{C}): R = mg
$$

$$
R(\leftrightarrow): F = mr\omega^2
$$

$$
\frac{3}{7}mg \ge m\frac{3}{5}a\omega^2
$$

$$
\therefore \omega^2 \le \frac{5g}{7a}
$$

Mechanics 3

Solution Bank

The limits for ω^2 depend on whether the friction is acting with the tension or against it.

$$
R(\leftrightarrow): \frac{3}{7}mg + \frac{mg}{2} \ge m\frac{3}{5}a\omega^2, \omega^2 \le \frac{5}{3a} \times \frac{13g}{14} = \frac{65g}{42a}
$$

or $R(\leftrightarrow): -\frac{3}{7}mg + \frac{mg}{2} \le m\frac{3}{5}a\omega^2, \omega^2 \ge \frac{5}{3a} \times \frac{g}{14} = \frac{5g}{42a}$

$$
\frac{5g}{42a} \le \omega^2 \le \frac{65g}{42a}
$$

b Resolving towards *O*: $T - mg \sin \theta = \frac{mv^2}{2}$ *a* $-mg\sin\theta =$ $\frac{4}{3}$ mg + 2mg sin θ + mg sin θ = mg $\left(\frac{4}{3}+3\sin\theta\right)$ 3^{3} 3^{3} 3^{3} $T = \frac{4}{3}mg + 2mg\sin\theta + mg\sin\theta = mg\left(\frac{4}{3} + 3\sin\theta\right)$

c $T = 0$ when $\sin \theta = -\frac{4}{8}$, $\theta = 206$ 9 $\theta = -\frac{4}{\rho}$, $\theta = 206^{\circ}$

d When $v = 0$, $\sin \theta = -\frac{4}{6} = -\frac{2}{3}$, $(\theta \approx 222^{\circ})$ 6 3 $v = 0$, $\sin \theta = -\frac{4}{6} = -\frac{2}{3}$, $(\theta \approx 222^{\circ})$ so the particle would not complete the circle.

$$
\mathbf{c} \quad \mathbf{i} \quad R = 0 \Rightarrow \cos \theta = \frac{1}{2} (5 - 4 \cos \theta), \, 3 \cos \theta = \frac{5}{2}, \, \cos \theta = \frac{5}{6}
$$

$$
i \qquad v^2 = \frac{ga}{2}(5 - 4\cos\theta) = \frac{ga}{2}\left(5 - \frac{10}{3}\right) = \frac{5ga}{6}, \ v = \sqrt{\frac{5ga}{6}}
$$

d By considering K.E. + P.E. at *A* and *B*, if *v* is the speed at *B*,

$$
\frac{1}{2}mv^2 = \frac{1}{2}m\frac{ag}{2} + mga, v^2 = \frac{5ga}{2}, v = \sqrt{\frac{5ga}{2}}
$$

$$
\cos\theta = \frac{u^2 + 2ag}{3ag}
$$

b Conservation of energy from *A* to surface:

$$
\frac{1}{2}mu^{2} + mga = \frac{1}{2}m \times \frac{5ag}{2}, u^{2} = \frac{ag}{2}, \cos \theta = \frac{5}{6}, \theta \approx 34^{\circ}
$$

Challenge

a At point
\n
$$
(x, x^2), \frac{dy}{dx} = 2x
$$

\n $R(\uparrow): R \cos \theta = mg$ (1)
\n $R(\rightarrow): R \sin \theta = mx\omega^2$ (2)
\n(2) \div (1) : $\tan \theta = \frac{x\omega^2}{g}$ (3)
\n $\tan \theta = \frac{dy}{dx} = 2x$
\n $\therefore 2x = \frac{x\omega^2}{g} \Rightarrow 2g = \omega^2$
\n $\Rightarrow \omega = \sqrt{2g}$

Hence ω is independent of the vertical height.

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free. 8

P Pearson

Mechanics 3 Solution Bank

Challenge

 b From (**3**) $x^2 = \frac{g \tan \theta}{g}$. For ω to be $\frac{dy}{dx} = \tan \theta = ax \implies y = \frac{1}{2}ax^2$ Hence $f(x) = px^2 + q$ for the constants p and q independent of $x \Rightarrow \frac{g \tan \theta}{g} = k$ for constant k \Rightarrow tan $\theta = ax$ for constant *a* dx 2 *x x* $\frac{y}{x}$ = tan $\theta = ax \Rightarrow y = \frac{1}{2}ax^2 + b$ *x* $\omega^2 = \frac{g \tan \theta}{g}$. For ω $\Rightarrow \frac{g \tan \theta}{g} =$ $= \tan \theta = ax \Rightarrow y = \frac{1}{2}ax^2 +$