Mechanics 3 Solution Bank

Exercise 4B

- **1** $a = r\omega^2$: $a = 0.16 \times 25 = 4 \text{ m s}^{-2}$
- 2 $a = \frac{v^2}{a}$: $a = \frac{2.5^2}{a} \approx 20.8 \text{ m s}^{-2}$ 0.3 $a = \frac{v^2}{a}$: *a r* $=\frac{v}{c}$: $a=\frac{2.5}{2.2} \approx 20.8$ ms

3 **a**
$$
a = r\omega^2
$$
: 75 = 3 ω^2 , $\omega^2 = 25$, $\omega = 5 \text{ rad s}^{-1}$

b
$$
a = \frac{v^2}{r}
$$
: 75 = $\frac{v^2}{3}$, $v^2 = 3 \times 75 = 225$, $v = 15$ ms⁻¹

4 a $a = r\omega^2$: 100 = 0.6 ω^2 , $\omega^2 \approx 166.7$, $\omega \approx 12.9$ rad s⁻¹

b
$$
a = \frac{v^2}{r}
$$
: 100 = $\frac{v^2}{0.6}$, $v^2 = 100 \times 0.6 = 60$, $v = 7.75$ ms⁻¹

5 50 km h⁻¹ =
$$
\frac{50 \times 1000}{3600} \approx 13.89 \text{ m s}^{-1}
$$

$$
a = \frac{v^2}{r} : a = \frac{13.89^2}{90} \approx 2.14 \text{ m s}^{-2}
$$

6
$$
a = r\omega^2
$$
: $6 = 75\omega^2$, $\omega^2 = 0.08$, $\omega \approx 0.283 \text{ rad s}^{-1}$

Using $F = ma$

P Pearson

$$
T = 0.3 \times 0.15 \times 4^2 = 0.72N
$$

Using $F = ma$

$$
T = \frac{0.15 \times 9^2}{0.25} = 48.6 \,\mathrm{N}
$$

P Pearson

-
- **b** Suppose the horizontal component of the $\begin{bmatrix} 0.06 \, \text{g} \\ 0.06 \, \text{g} \end{bmatrix}$ force is *F*: Using $F = ma$,

$$
F = \frac{0.06 \times 3^2}{0.12} = 4.5 \,\mathrm{N}
$$

-
- **b** Using $F = ma$ $F = 0.015 \times 0.12 \times 2^2 = 0.0072$ N

Let R be the normal reaction between the particle and the disc, F the frictional force, M the mass of the particle, and μ be the coefficient of friction between the particle and the disc. $R(\mathbb{C})$: $R = Mg$

The particle is about to slip, so $F = F_{max} = \mu R = \mu Mg$. Using $F = ma$, $\mu Mg = M \times 0.2 \times 1.2^2 = M \times 0.288$,

$$
\mu = \frac{0.288}{g} \approx 0.0294
$$

INTERNATIONAL A LEVEL

Mechanics 3

Solution Bank

Let *R* be the normal reaction between the particle and the disc, *F* the frictional force.

Given $\mu = 0.25$ and $F = F_{max} = 0.25 R$. $R(\text{ })} : R = 0.3g$, so $F_{max} = 0.25 \times 0.3g$. Using $F = ma$, $0.25 \times 0.3g = 0.3 \times 0.25 \times \omega^2$,

$$
g = \omega^2
$$

$$
\omega \approx 3.13 \,\text{rad s}^{-1}
$$

3600 $^{-1} = \frac{40 \times 1000}{2500} \approx 11.11 \text{ m s}^{-1}$

Let the mass of the car be *M*. Let *F* be the force due t_0 km h⁻¹ to friction between the car tyres and the road, μ the coefficient of friction, and *R* the normal reaction

At maximum speed the car is about to slip, so
$$
F = F_{max}
$$

\n $R(\text{I}): R = Mg$, so $F = F_{max} = \mu R = \mu Mg$
\n $M \times 11.11^2$ 11.11²

$$
R(\leftrightarrow): Using F = ma, \ \mu Mg = \frac{M \times 11.11^2}{80}, \ \mu = \frac{11.11^2}{80 \times 9.8} \approx 0.157
$$

 Let *F* be the force due to friction between the car tyres and the road, and *R* the normal reaction $v \text{ m s}^{-1}$ between the car and the road.

$$
Max speed \Rightarrow F = F_{max}
$$

R(①):
$$
R = ma
$$
, so $F = F_{max} = \mu R = \frac{1}{3}Mg$
R(↔): Using $F = ma$, $\frac{1}{3}Mg = M \times 60 \times \omega^2$, $\omega^2 = \frac{g}{180} \approx 0.0544$, $\omega \approx 0.233 \text{ rad s}^{-1}$

INTERNATIONAL A LEVEL

Mechanics 3 Solution Bank

15 a

90 rev $s^{-1} = 90 \times 2\pi$ rad s^{-1} $=180\pi$ rad s⁻¹

Let the normal reaction between the particle and the cylinder be *R*.

 $R(\leftrightarrow)$: Using $F = ma$, $R = 0.005 \times 0.2 \times (180\pi)^2 = 319.775... \approx 320$ N (2 s.f.)

b $F = mg$ $= 0.005 \times 9.8$ $R = 319.775$ *F* $\mu = \frac{I}{R}$

$$
= 1.5 \times 10^{-4}
$$

= 0.00015 (2 s.f.)

$$
16a
$$

Suppose that the person has mass *M*. Let the normal reaction between the person and the cylinder be *R*. *F* is the frictional force between the person and the wall of the

Minimum $W \implies$ the person is about to slip $\implies F = F_{max} = \frac{2}{3}$ \Rightarrow F = $F_{max} = \frac{2}{3}R$ $\frac{3Mg}{g} = M \times 2.5 \times W^2$, $W^2 = \frac{3g}{g}$, $W = \sqrt{\frac{3g}{g}} \approx 2.42 \text{ rad s}^{-1}$ Also $R(\mathbb{Q}) \Rightarrow F_{\text{max}} = Mg$, so $Mg = \frac{2}{3}R$, $R = \frac{3}{2}$ $R(\text{I}) \Rightarrow F_{max} = Mg$, so $Mg = \frac{2}{3}R$, $R = \frac{3Mg}{2}$ $R(\leftrightarrow)$: Using $F = ma$, 2 $5 \quad \sqrt{5}$ $R = \frac{3Mg}{g} = M \times 2.5 \times W^2$, $W^2 = \frac{3g}{g}$, $W = \sqrt{\frac{3g}{g}} \approx 2.42 \text{ rad s}^{-1}$

 b No, because it is the minimum possible value for *W*. If the speed or the coefficient of friction reduced at all, the people would slip down the cylinder.

0.2 m
$$
T
$$

\n0.2 m T
\n0.1 m
\n0.1 m
\nQ 0.08 kg
\n0.08 g

17 Let the tension in the string be *T*N, and the s speed of *P* be *v* m s⁻¹ *Q* is in equilibrium, so $R(\text{D})$ at $Q \Rightarrow T = 0.08 g$

For *P*, Using $F = ma$, $0.08 g = \frac{0.08v^2}{0.2}$, $v^2 = 0.2 \times g \approx 1.96$, $v = 1.4 \text{ ms}^{-1}$ 0.2 $T = 0.08 g = \frac{0.08v^2}{g}$, $v^2 = 0.2 \times g \approx 1.96$, $v = 1.4 \text{ ms}^{-1}$

 $\mu > \frac{1}{gR}$

Mechanics 3 Solution Bank

18 a Let the frictional force between the car tyre and the road be *F,* and the coefficient of friction be *µ*. The normal reaction between the car and the road is *R*.

P Pearson

0.3

$$
R(\uparrow): R = Mg
$$

\n
$$
R(\leftarrow): F = \frac{mv^2}{r}
$$

\nThe car does not slip at this speed,
\n
$$
F > \mu R
$$

\n
$$
\mu > \frac{Mv^2}{MgR}
$$

\n
$$
\mu > \frac{v^2}{r}
$$

- **b** Model assumes that the tyres all experience the same friction.
- **19** If the extension in the spring is *x* m, then the radius of the circle is $(0.3 + x)$.

The tension in the string is given by
$$
T = \frac{\lambda x}{a} = \frac{10x}{0.3}
$$

\nUsing $F = ma$,
\n $\frac{10x}{0.3} = 0.25 \times (0.3 + x) \times 3^2$
\n $10x = \frac{9}{4} \times \frac{3}{10} (0.3 + x)$
\n $400x = 8.1 + 27x$
\n $373x = 8.1$
\n $x = 0.02171...$
\nRadius = 0.3 + 0.0217
\n= 0.322 m (3 s.f.)

INTERNATIONAL A LEVEL

Mechanics 3

Solution Bank

20

F is force due to friction,

R is the nornal reaction.

$$
R(\mathcal{L}): R = mg
$$

$$
R(\leftrightarrow): F = mr\omega^2
$$

If P is not to slip then

 $0.3 \times 4g \geqslant 4 \times 2 \times \omega^2$

$$
\therefore \omega^2 \leqslant \frac{147}{100}
$$

 T is the tension in the elastic string:

 12 2 1.5 1.5 4 N *x T l*

 $R(\leftrightarrow): 0.3 \times 4 \times g + 4 \geq 4 \times 2 \times \omega^2$ The limits for ω^2 depends on whether the friction is acting with the tension or against it:

$$
\omega^2 = \frac{197}{100}
$$

R(\leftrightarrow): -0.3×4×g+4 ≤ 4×2× ω^2

$$
\omega^2 \ge \frac{97}{100}
$$

$$
\frac{\sqrt{97}}{10} \le \omega \le \frac{\sqrt{197}}{10}
$$

Mechanics 3

Solution Bank

Challenge a

$$
x = pt
$$
\n
$$
t = \frac{x}{p}
$$
\n
$$
y = q\left(\frac{x}{p}\right)^2
$$
\n
$$
= \frac{q}{p^2}x^2
$$

b $\frac{dx}{dt} = p$; $\frac{dy}{dt} = 2$ dt dt dt $\frac{x}{y} = p$; $\frac{dy}{dt} = 2qt$ $t \leftarrow t$ dt $= p; \frac{dy}{dx} = 2qt$

Acceleration is 2*q* in the positive *y*-direction. Speed at the origin is *p*.

c Solve for y,

$$
x2 + (y-R)2 = R2
$$

$$
(y-R)2 = R2 - x2
$$

$$
y = R \pm \sqrt{R2 - x2}
$$

For lower half of a circle

$$
y = R - \sqrt{R^2 - x^2}
$$

$$
d \quad R = \frac{p^2}{2q}
$$

e 2*q*

f The acceleration of *P* and *Q* are equal.