Mechanics 3 Solution Bank

Exercise 3E

P Pearson

$$\therefore 0.75\ddot{x} = -\frac{80}{1.5}x$$
$$\ddot{x} = -\frac{80}{1.5 \times 0.75}x$$
$$\therefore \text{ S.H.M.}$$

c

$$\omega^2 = \frac{80}{1.5 \times 0.75}$$
Period = $\frac{2\pi}{\omega} = 2\pi \sqrt{\frac{1.5 \times 0.75}{80}}$
= 0.7450...

The period is 0.745s (3 s.f.)

of the form $\ddot{x} = -\omega^2 x$

1.

Mechanics 3 Solution Bank

x = 0 at the equilibrium level.

1 d $v^2 = \omega^2 (a^2 - x^2)$ $2.5^2 = \frac{80}{1.5 \times 0.75} a^2$ $a^2 = \frac{2.5^2 \times 1.5 \times 0.75}{80}$

The amplitude is 0.296 m (3 s.f.)

The extension is 0.049 m (or 4.9 cm)

b

$$\begin{array}{c}
F = ma \\
0.5 \text{ m} \\
\lambda = 50 \text{ N}
\end{array}$$

$$\begin{array}{c}
F = ma \\
0.5 \text{ g} - T = 0.5 \ddot{x}
\end{array}$$

$$\begin{array}{c}
\text{Use } F = ma \text{ and Hooke's Law} \\
\text{to find } \omega
\end{array}$$

$$\begin{array}{c}
\text{Use } F = ma \text{ and Hooke's Law} \\
\text{to find } \omega
\end{array}$$

$$\begin{array}{c}
\text{Use } F = ma \text{ and Hooke's Law} \\
\text{to find } \omega
\end{array}$$

$$\begin{array}{c}
\text{Use } F = ma \text{ and Hooke's Law} \\
\text{to find } \omega
\end{array}$$

$$\begin{array}{c}
\text{Use } F = ma \text{ and Hooke's Law} \\
\text{to find } \omega
\end{array}$$

$$\begin{array}{c}
\text{Use } F = ma \text{ and Hooke's Law} \\
\text{to find } \omega
\end{array}$$

$$\begin{array}{c}
\text{Use } F = ma \text{ and Hooke's Law} \\
\text{to find } \omega
\end{array}$$

$$\begin{array}{c}
\text{Use } F = ma \text{ and Hooke's Law} \\
\text{to find } \omega
\end{array}$$

$$\begin{array}{c}
\text{Use } F = ma \text{ and Hooke's Law} \\
\text{to find } \omega
\end{array}$$

$$\begin{array}{c}
\text{Use } F = ma \text{ and Hooke's Law} \\
\text{to find } \omega
\end{array}$$

$$\begin{array}{c}
\text{Use } F = ma \text{ and Hooke's Law} \\
\text{to find } \omega
\end{array}$$

$$\begin{array}{c}
\text{Use } F = ma \text{ and Hooke's Law} \\
\text{to find } \omega
\end{array}$$

$$\begin{array}{c}
\text{Use } F = ma \text{ and Hooke's Law} \\
\text{to find } \omega
\end{array}$$

$$\begin{array}{c}
\text{Use } F = ma \text{ and Hooke's Law} \\
\text{to find } \omega
\end{array}$$

$$\begin{array}{c}
\text{Use } F = ma \text{ and Hooke's Law} \\
\text{to find } \omega
\end{array}$$

$$\begin{array}{c}
\text{Use } F = ma \text{ and Hooke's Law} \\
\text{to find } \omega
\end{array}$$

$$\begin{array}{c}
\text{Use } F = ma \text{ and Hooke's Law} \\
\text{to find } \omega
\end{array}$$

$$\begin{array}{c}
\text{Use } F = ma \text{ and Hooke's Law} \\
\text{The maximum speed occurs at the equilibrium level (i.e. when $x = 0$). \\
\begin{array}{c}
\text{equilibrium level (i.e. when $x = 0$). \\
\text{equilibrium level (i.e. when $x = 0$). \\
\begin{array}{c}
\text{equilibrium level (i.e. when $x = 0$). \\
\end{array}$$

The maximum speed is $2\sqrt{2} \text{ m s}^{-1}$ (or 2.83 m s⁻¹ (3 s.f.)).

3 a For the impact: I = mv - mu

3 = 2v

v = 1.5

The speed immediately after the impact is 1.5 m $\ensuremath{\mathrm{s}}^{-1}.$

$$\therefore 2g - \frac{\lambda(e+x)}{1.5} = 2\ddot{x}$$

From above: $\frac{\lambda e}{1.5} = 2g$
$$\therefore -\frac{\lambda x}{1.5} = 2\ddot{x}$$

$$\ddot{x} = -\frac{\lambda}{3}x$$

as $\lambda > 0$, this is S.H.M.

c period $= \frac{2\pi}{\omega} = \frac{\pi}{2}$ $\therefore \quad \omega = 4$ From $\ddot{x} = -\frac{\lambda}{3}x, \ \omega^2 = \frac{\lambda}{3}$ $\therefore \frac{\lambda}{3} = 16$ $\lambda = 48$

Mechanics 3 Solution Bank

3 **d** maximum speed = 1.5 m s⁻¹

$$v^2 = \omega^2(a^2 - x^2)$$

 $v_{mm} \equiv \omega a$
 $a = \frac{1.5}{4} = 0.375$
The amplitude is 0.375 m.
4 **a**
 0.12 m $2g$ N $\frac{x}{x}$
 $\lambda = 500$ N
For the oscillations:
 $F = ma$
 $2g - T = 2\ddot{x}$
Hooke's Law: $T = \frac{2x}{l}$
 $T = \frac{500e}{0.12}$ Change cm to m.
For the oscillations:
 $F = ma$
 $2g - T = 2\ddot{x}$
Hooke's Law: $T = \frac{500}{0.12}$ Change cm to m.
For the oscillations:
 $F = ma$
 $2g - T = 2\ddot{x}$
Hooke's Law: $T = \frac{2x}{l}$
 $T = \frac{500(e + x)}{0.12}$
 $\therefore 2g = \frac{500(e + x)}{0.12} = 2\ddot{x}$
From above: $\frac{500e}{0.12} = 2\ddot{x}$
 $\ddot{x} = -\frac{250}{0.12}$
 $\omega^2 = \frac{250}{0.12}$ Compare line above with $\ddot{x} = -\omega^2 x$.
period $= \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{0.12}{250}}$
 $= 0.1376...$
The period is 0.138 s (3 s.f.)

Mechanics 3

amplitude = 0.04 - e

$$v^2 = \omega^2 (a^2 - x^2)$$

 $v_{\text{max}} = a\omega$
 $= \sqrt{\frac{250}{0.12}} \times (0.04 - e)$
 $= \sqrt{\frac{250}{0.12}} \times \left(0.04 - \frac{2g \times 0.12}{500}\right)$
 $= 1.611...$

The maximum speed is 1.61 m s⁻¹ (3 s.f.).

The modulus of elasticity is 31.4 N (3 s.f.)

om
$$\ddot{x} = -\frac{31.36}{0.4^2}x$$
$$\omega = \frac{\sqrt{31.36}}{0.4}$$

period =
$$\frac{2\pi}{\omega} = 2\pi \times \frac{0.4}{\sqrt{31.36}} = 0.4487...$$

The period is 0.449 s.

amplitude = 52 - 45 = 7 (cm)

The amplitude is 0.07 m.

$$\mathbf{d} \quad v^2 = \omega^2 (a^2 - x^2)$$
$$v_{\text{max}} = \omega a$$
$$= \frac{\sqrt{31.36}}{0.4} \times 0.07$$
$$= 0.98$$

The maximum speed is 0.98 m s⁻¹.

e 11 cm from the lowest point

$$\Rightarrow AP = 41 \text{ cm.}$$

$$\therefore x = -4 \text{ cm} = -0.04 \text{ m}$$

$$x = a \cos \omega t$$

$$-0.04 = 0.07 \cos \omega t$$

$$\omega t = \cos^{-1} \left(-\frac{0.04}{0.07} \right) = \cos^{-1} \left(-\frac{4}{7} \right)$$

$$t = \frac{1}{\omega} \cos^{-1} \left(-\frac{4}{7} \right) = \frac{0.4}{\sqrt{31.36}} \cos^{-1} \left(-\frac{4}{7} \right)$$

$$= 0.1556...$$

P takes 0.156 s to rise 11 cm (3 s.f.).

Pearson 🕐

Mechanics 3

Solution Bank

For the oscillations:

$$F = ma$$

 $0.4g - T = 0.4\ddot{x}$
Hooke's Law: $T = \frac{\lambda x}{l}$
 $T = \frac{10(e+x)}{0.5}$
 $\therefore 0.4g - \frac{10(e+x)}{0.5} = 0.4\ddot{x}$

From above $0.4g = \frac{10e}{0.5}$ $\therefore \qquad -\frac{10x}{0.5} = 0.4\ddot{x}$ $\ddot{x} = -\frac{20x}{0.4} = -50x$

$$\therefore$$
 S.H.M. with $\omega^2 = 50$

amplitude = 0.2 m $x = a \cos \omega t$ $x = 0.2 \cos \sqrt{50}t$

String becomes slack when x = -e

$$-\frac{0.4g}{20} = 0.2\cos\sqrt{50}t$$
$$\cos\sqrt{50}t = -\frac{2g}{20} = -\frac{g}{10} = -0.98$$
$$\sqrt{50}t = \cos^{-1}(-0.98)$$
$$t = \frac{1}{\sqrt{50}}\cos^{-1}(-0.98)$$
$$t = 0.4159$$

The string becomes slack after 0.416 s (3 s.f.)

6 b The velocity of *P* is given by $v^2 = \omega^2 (a^2 - x^2)$

where $\omega^2 = 50$, a = 0.2 and x = 0.196

Therefore at the instant the string becomes slack

$$v^2 = 50(0.2^2 - 0.196^2)$$

 $v = 0.2814... \text{ m s}^{-1}$

At the instant the string becomes slack, the particle is no longer moving under SHM but under gravity. To find the time taken for P to pass through this point again use

$$v = u + at$$

with $v = -0.2814$, $u = 0.2814$ and $a = -9.8$
 $-0.2814 = 0.2814 - 9.8t$
 $t = 0.5742...$ s

So the time taken for the string to become taut again is 0.574 s (3 s.f.)

Mechanics 3

Solution Bank

Motion under gravity: $v^2 = u^2 + 2as$

 $0 = 4.96 - 2 \times 9.8s$

$$s = \frac{4.96}{2 \times 9.8} = 0.2530...$$

height above equilibrium position = 0.2530 - 0.0325 = 0.2205

Height is 0.221 m.

Use motion under gravity.

Mechanics 3

Solution Bank

Particle starts from an end-point.

$$x = 0.4325 \cos \sqrt{\frac{80}{3}}t$$

$$x = 0.0325 \ 0.0325 = 0.4325 \cos \sqrt{\frac{80}{3}}t$$

$$\cos \sqrt{\frac{80}{3}}t = \frac{0.0325}{0.4325}$$

$$t = \sqrt{\frac{3}{80}} \cos^{-1}\left(\frac{0.0325}{0.4325}\right)$$

$$= 0.2896$$

 $x = a \cos \omega t$

Motion under gravity:

$$v = u + at$$

$$O = \sqrt{4.96} - 9.8t$$

$$t = \frac{\sqrt{4.96}}{9.8}$$

total time =
$$0.2896... + \frac{\sqrt{4.96}}{9.8} = 0.5168..$$

The time taken to reach the highest point is 0.517s (3 s.f.)

In equilibrium, AP = 1.69 m (3 s.f.)

Mechanics 3

Solution Bank

For the oscillations: $T_A = \frac{15(e+x)}{0.6}$ $T_B = \frac{15(1.6 - (e + x))}{0.6}$ $\begin{array}{c} T_{B} = & 0.6 \\ \hline T_{A} = & 0.6 \\ F = ma \\ 1.6 - (e+x) \\ 0.6 \text{ m} \\ \hline T_{B} \\ \hline 1.5g \text{ N} \\ T_{B} \\ \hline \end{array}$ $\begin{array}{c} 1.5g + \frac{15(1.6 - (e+x))}{0.6} - \frac{15(e+x)}{0.6} = 1.5\ddot{x} \\ 1.5g + 40 - 25(e+x) - 25(e+x) = 1.5\ddot{x} \\ \hline \end{array}$ $1.5g + 40 - 25(e + x) - 25(e + x) = 1.5\ddot{x}$ $1.5g + 40 - 50e - 50x = 1.5\ddot{x}$ from **a** 50e = 1.5g + 40 $\therefore 1.5\ddot{x} = -50x$ $\ddot{x} = -\frac{50}{1.5}x = -\frac{100}{3}x$

- \therefore *P* moves with S.H.M.
- **c** amplitude = 0.15 m

9 a Until rope is taut:

$$v^{2} = u^{2} + 2as$$

$$v^{2} = 0 + 2 \times 9.8 \times 8$$

$$v = 12.52...$$
Climber falling freely under gravity.

When the rope becomes taut the climber's speed is 12.5 m s^{-1} (3 s.f.)

Hooke's Law: $T = \frac{\lambda x}{L}$ **b** can be solved by using 16 m conservation of energy. However c involves time, so $T = \frac{40\ 000e}{16}$ S.H.M. methods are needed. ex TPIt is more efficient to use S.H.M. for both parts. $R(\uparrow)T = 70g$ $\therefore \quad 70g = \frac{40\ 000e}{16}$ 70gx $e = \frac{16 \times 70g}{40\ 000} = \frac{7g}{250}$ For the oscillation: F = ma $70g - T = 70\ddot{x}$ Hooke's Law: $T = \frac{40\ 000\ (x+e)}{16}$ From **a**: $70g = \frac{40\ 000e}{16}$ $70g - \frac{40\,000(x+e)}{16} = 70\ddot{x}$ $\ddot{x} = -\frac{4000}{16 \times 7} x = -\frac{250}{7} x$ $\omega^2 = \frac{250}{7}$ Use the result from part **a**, ie $v^2 = \omega^2 (a^2 - x^2)$ the speed when $x = e\left(=\frac{7g}{250}\right)$ $156.8 = \frac{256}{7} \left(a^2 - \left(\frac{7g}{250}\right)^2 \right)$ $a^2 = \frac{156.8 \times 7}{250} + \left(\frac{7g}{250}\right)^2$ $a^2 = 4.4656...$ a = 2.113...The amplitude is the greatest

Total distance = 2.113 + e + 87 σ

$$= 2.113 + \frac{7g}{250} + 8$$
$$= 10.38...$$

The amplitude is the greatest distance below the equilibrium level.

The total distance fallen is 10.4 m (3 s.f.)

	-
9 c $x = a \cos \omega t$ $x = 2.113 \cos \sqrt{\frac{250}{7}t}$	Because of the symmetry of S.H.M. there are several methods available for c .
when $x = e^{-\frac{7g}{250}} = 2.113 \cos \sqrt{\frac{250}{7}}t$ $t = \sqrt{\frac{7}{250}} \cos^{-1}\left(\frac{7 \times 9.8}{250 \times 2.113}\right)$ period $= \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{7}{250}}$	This method assumes the oscillation is complete and finds the time from the highest point $(x = a)$ to the equilibrium level (x = e). This time will be subtracted from half the period. So it does not matter that this part of the oscillation does not exist.
Time while the rope is taut: = $\frac{2\pi}{2}\sqrt{\frac{7}{250}} - \sqrt{\frac{7}{250}}\cos^{-1}\left(\frac{7 \times 9.8}{250 \times 2.113}\right)$ = 0.2846	Time from highest point to lowest point of a complete oscillation is half the period. Subtract the time for the missing part (before the rope is taut) to obtain the time while the rope is taut.
While moving under gravity: $s = ut + \frac{1}{2}at^2$	The time before the rope becomes taut is also needed.
$8 = \frac{1}{2} \times 9.8t^{2}$ $t^{2} = \frac{16}{9.8}$ total time = $\frac{4}{\sqrt{9.8}} + 0.2846$	

The total time is 1.56 s (3 s.f).

Challenge

Particle P moves with SHM, time period

$$T = 2\pi \sqrt{\frac{ml}{\lambda}} = 2\pi \sqrt{\frac{ml}{5mg}}$$
$$= 2\pi \sqrt{\frac{l}{5g}}$$

Particles P and Q together move with SHM,

time period
$$3T = 6\pi \sqrt{\frac{l}{5g}}$$

Also $3T = 2\pi \sqrt{\frac{(m+km)l}{5mg}}$
 $= 2\pi \sqrt{\frac{l(1+k)}{5g}}$
So $6\pi \sqrt{\frac{l}{5g}} = 2\pi \sqrt{\frac{l(1+k)}{5g}}$
 $3\sqrt{l} = 2\sqrt{l(1+k)}$
 $9l = 4l(1+k)$
 $9 = 4 + 4k$
 $k = \frac{5}{4}$