Mechanics 3 Solution Bank

Exercise 3D

$$\begin{array}{c}
\mathbf{1} \quad \underbrace{\mathbf{1} \quad \underbrace{\mathbf{T} \quad P \quad 0.5 \text{ kg}}_{0.6 \text{ m}} \quad \lambda \rightarrow x} \quad \lambda = 60 \text{ N} \\
\mathbf{a} \quad F = ma \\ -T = 0.5 \ddot{x} \\
\text{Hooke's law: } T = \frac{\lambda x}{l} \\
\text{Tree = 0.5 \ddot{x}} \\
\text{Hooke's law: } T = \frac{60}{0.6} = 100x \\
-100x = 0.5 \ddot{x} \\
\ddot{x} = \frac{100}{0.5} x \\
\ddot{x} = -200x \\
\therefore \text{S.H.M.} \\
\mathbf{b} \quad \omega^2 = 200 \quad \omega = \sqrt{200} = 10\sqrt{2} \\
\text{period = } \frac{2\pi}{\omega} = \frac{2\pi}{10\sqrt{2}} = \frac{\pi}{10}\sqrt{2} \\
\therefore \text{ period is } \frac{\pi}{10}\sqrt{2} \text{ s (or 0.444 s (3s.f.))} \\
\text{amplitude = } 0.9 - 0.6 = 0.3 \\
\therefore \text{ amplitude is 0.3 m} \\
\mathbf{c} \quad v^2 = \omega^2(a^2 - x^2) \\
v_{\text{max}} = \omega a = 10\sqrt{2} \times 0.3 \\
= 3\sqrt{2} \\
\end{array}$$

The maximum speed is $3\sqrt{2}$ ms⁻¹ or 4.24 m s⁻¹ (3 s.f.)

INTERNAL	IUNAL A LEVEL			
Mecha	nics 3	Solution Bank		Pearson
2 0-	1.6 m	$T P 0.8 \text{ kg}$ $\lambda = 20 \text{ N}$		
a	$F = ma$ $-T = 0.8\ddot{x}$			
	Hooke's Law: $T =$ T =	$\frac{\lambda x}{l}$ $\frac{20}{1.6}x$		
	$-\frac{20}{1.6}x = $ $\ddot{x} =$ $\therefore \text{ S.H.M.}$	$0.8\ddot{x} - \frac{20x}{1.6 \times 0.8} = -\frac{10x}{0.8^2}$		
b	$\omega = \frac{\sqrt{10}}{0.8}$ $\therefore \text{ period} = \frac{2\pi}{\omega} = \frac{2\pi}{\omega}$ amplitude = 2.6 - $v^2 = \omega^2 (a)$	$= 2\pi \times \frac{0.8}{\sqrt{10}} = \frac{1.6\pi}{\sqrt{10}}$ = 1.6 = 1 m $x^{2} - x^{2}$)		
	$v_{\text{max}} = \omega a =$ total distance at t	$1 \times \frac{\sqrt{10}}{0.8}$ his speed = 4×1.6	[The oscillation is split into 2 parts which are twice the natural length apart
		$= 6.4 \mathrm{m}$		
	∴ t	time = $6.4 \times \frac{0.8}{\sqrt{10}}$ otal time = $6.4 \times \frac{0.8}{\sqrt{10}} + \frac{1}{\sqrt{10}}$	$\frac{.6\pi}{10} = 3.208$	For the middle section the particle moves at a constant speed (= the maximum speed of the S.H.M.)
	The total time is 3	.21 s (3 s.f.)		

Mechanics 3	Solution Bank		Pearson
3 \overline{A} 1.2 m a $F = ma$ $-T = 0.4\ddot{x}$ Hooke's Law: $T =$	$\frac{T}{x} \stackrel{P}{\longrightarrow} 0.4 \text{ kg}$ $x \stackrel{\bullet}{\longrightarrow} \ddot{x} \lambda = 24 \text{ N}$ $= \frac{\lambda x}{l}$		
$T = \frac{\lambda x}{l}$ $T = \frac{24x}{1.2} = 2$ $\therefore -20x = 0.4\ddot{x}$ $\ddot{x} = -\frac{20}{0.4}x$ $\ddot{x} = -50x$ $\therefore S.H.M.$	0 <i>x</i>		
b For the impact 1 . 1.8 v period $=\frac{2\pi}{\omega} = \frac{2\pi}{5\sqrt{2}}$		This It is	the speed of <i>P</i> while the string is slack. also the maximum speed for the S.H.M.
$\therefore \text{ time for half and}$ time at constant sp $= \frac{0.2}{4.5} = \frac{2}{45} \text{ s}$ π	a oscillation $=\frac{\pi}{5\sqrt{2}}$ s beed		<i>P</i> travels 0.2 m before the string becomes taut.
total time = $\frac{\pi}{5\sqrt{2}}$ + time is 0.489 s (3 c $v^2 = \omega^2 (a^2 - x^2)$ $v_{\text{max}} = 4.5 \text{m s}^{-1}$ $\therefore 4.5 = a\omega$	$\frac{2}{45} = 0.4887$ s.f.)		ω and the maximum speed are known so the amplitude can be found.
$a = \frac{4.5}{5\sqrt{2}}$ $AB = 1.2 + \frac{4.5}{5\sqrt{2}}$ $= 1.836$	4		<i>AB</i> is the natural length of the string plus the amplitude of the S.H.M.

Distance AB is 1.84 m (3 s.f.)

Mechanics 3

4

Solution Bank

 $O \xrightarrow{T} P \quad 0.8 \text{ kg}$ $1.2 \text{ m} \qquad x \xrightarrow{Y} \lambda = 80 \text{ N}$ $a \quad F = ma$ $-T = 0.8 \ddot{x}$ Hooke's Law: $T = \frac{\lambda x}{l}$ $= -\frac{80x}{l}$

$$T = \frac{300x}{1.2}$$
$$0.8\ddot{x} = -\frac{80}{1.2}x$$
$$\ddot{x} = -\frac{100}{1.2}x$$

 \therefore SHM

b $\omega = \sqrt{\frac{100}{1.2}} = \frac{10}{\sqrt{1.2}}$ period $= \frac{2\pi}{\omega} = \frac{2\pi}{10}\sqrt{1.2}$ = 0.6882...

> period is 0.688 s (3 s.f.)amplitude = 1.2 - 0.6 = 0.6 m

c
$$v^2 = \omega^2 (a^2 - x^2)$$

 $v_{\text{max}} = \omega a$
 $= \frac{10}{\sqrt{1.2}} \times 0.6$
 $= 5.477...$

The max speed is 5.48 m s⁻¹ (3 s.f.)

INTERNATIONAL A LEVEL

The maximum magnitude of the acceleration is 50 m s^{-2} .

Mechanics 3

Solution Bank

6

b

$$O \xrightarrow{T} P \quad 0.9 \text{ kg}$$

$$1.5 \text{ m} \qquad x \xrightarrow{\gamma} \ddot{x} \quad \lambda = 24 \text{ N}$$

a amplitude = (2 - 1.5) m = 0.5 m

energy; K.E. gained
$$= \frac{1}{2}mv^2 = \frac{1}{2} \times 0.9v^2$$

E.P.E. lost $= \frac{\lambda x^2}{2l} = \frac{24 \times 0.5^2}{2 \times 1.5}$
 $\frac{1}{2} \times 0.9v^2 = 24 \times \frac{0.5^2}{2 \times 1.5}$
 $v^2 = \frac{2 \times 24 \times 0.5^2}{0.9 \times 2 \times 1.5}$
 $v = 2.108...$

b can be solved by using conservation of energy or by S.H.M. methods, finding the maximum speed for the oscillation.

The speed is 2.11 m s⁻¹ (3 s.f.)

c i Impact with the wall: Newton's law of impact : eu = v

$$\therefore v = \frac{3}{5} \times 2.108...$$
$$= 1.264...$$

$$\therefore \text{ maximum speed for the new oscillation is } 1.264 \text{ m s}^{-1}$$

$$F = ma$$

$$-T = 0.9\ddot{x}$$
S.H.M. methods essential for this part.

Hooke's Law:
$$T = \frac{\lambda x}{l}$$
$$T = \frac{24}{1.5} x = 16x$$
$$\therefore -16x = 0.9\ddot{x}$$
$$\ddot{x} = -\frac{16}{0.9} x$$
$$\therefore \omega = \frac{4}{\sqrt{0.9}}$$
$$\text{period} = \frac{2\pi}{\omega} = 2\pi \frac{\sqrt{0.9}}{4} = 1.490...$$

The period is 1.49s (3 s.f.).

ii
$$v^2 = \omega^2 (a^2 - x^2)$$

 $v_{\text{max}} = \omega a$
 $1.264 = \frac{4}{\sqrt{0.9}} a$
 $a = 1.264 \times \frac{\sqrt{0.9}}{4}$
 $a = 0.2997$

Now ω is known you can find the amplitude using $v^2 = \omega^2 (a^2 - x^2)$ with the maximum speed.

The amplitude is 0.300 m (3 s.f.)

Mechanics 3

Solution Bank

7		T P 2.5 kg
		$0.5 \text{ m} \qquad x \longrightarrow \ddot{x} \lambda = 400 \text{ N}$
	a	F = ma
		$-T = 2.5\ddot{x}$
		Hooke's Law: $T = \frac{\lambda x}{l}$
		$T = \frac{400x}{0.5} = 800x$
		$-800x = 2.5\ddot{x}$
		$\ddot{x} = -\frac{800}{2.5}x$
		$\ddot{x} = -320x$
		$\omega = \sqrt{320}$
		period = $\frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{320}} = 0.3512$

The period is 0.351 s (3 s.f.).

b amplitude = (50 - 42) cm

$$= 0.08 \text{ m}$$

$$v^{2} = \omega^{2} \left(a^{2} - x^{2}\right)$$

$$v_{\text{max}} = \omega a$$

$$= \sqrt{320 \times 0.08}$$
maximum K.E = $\frac{1}{2} \times 2.5 \times \left(\sqrt{320 \times 0.08}\right)^{2}$

$$= 2.56$$

The maximum K.E. is 2.56 J.

Mechar	nics 3	Solution Bank		Pearson
8 <i>O</i> -	0.4 m	$T \qquad P 0.5 \text{ kg}$ $x \qquad \longrightarrow \ddot{x}$		
a	F = ma			
	$-T = 0.5\ddot{x}$		4	a can be done by conservation of
	Hooke's Law: $T = \frac{\lambda x}{l}$			oscillation is needed for b .
	Т	$x = \frac{30}{0.4}x = 75x$		
	$\therefore 0.5\ddot{x}$			
	ż			
	ż			
	:. a	$p = \sqrt{150}$		
	amplitude			
	v^2	$=\omega^2(a^2-x^2)$		
	${\cal V}_{ m max}$	$a = a\omega$		
		$=\sqrt{150} \times 0.2$		
		= 2.449		
	When the string b	ecomes slack P's speed	is 2.45 m s ⁻¹ (3 s.f.).	

b period
$$=\frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{150}}$$

On the smooth floor:
time $=\frac{0.1}{2.449}$
On the rough floor:
a
 R
 F
 $0.5g$
 $\mu = 0.25$
 $-F = 0.5a$
 $F = \mu R = 0.25 \times 0.5g$
 $\therefore 0.5a = -0.25 \times 0.5g$
 $a = -0.25g$
 $v = u + at$
 $0 = 2.449 - 0.25gt$
 $t = \frac{2.449}{0.25 \times 9.8}$
total time $=\frac{1}{4} \times \frac{2\pi}{\sqrt{150}} + \frac{0.1}{2.449} + \frac{2.449}{0.25 \times 9.8}$
 $= 1.168...$
 $\therefore T = 1.17$ N(3s.f.)

b
$$\omega^2 = 50$$

amplitude = 0.6 m

$$v^{2} = \omega^{2}(a^{2} - x^{2})$$

$$v^{2}_{max} = \omega^{2}a^{2}$$

$$= 50 \times 0.6^{2}$$
maximum K.E. = $\frac{1}{2}mv^{2}_{max}$

$$= \frac{1}{2} \times 0.4 \times 50 \times 0.6^{2}$$

$$= 3.6$$

The maximum K.E. is 3.6 J.

$$T_{B} = \frac{3mg(1.5l - x)}{l}$$
$$\therefore \frac{3mg(1.5l - x)}{l} - \frac{3mg(1.5l + x)}{l} = m\ddot{x}$$
$$-\frac{6mgx}{l} = m\ddot{x}$$
$$\ddot{x} = -\frac{6g}{l}x$$

: S.H.M.

b
$$\omega^2 = \frac{6g}{l} \quad \omega^2 = \sqrt{\frac{6g}{l}}$$

period $= \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{l}{6g}}$

c Amplitude = 1.5l

d

$$v^{2} = \omega^{2}(a^{2} - x^{2})$$

$$AP = 3l \Longrightarrow x = \frac{1}{2}$$

$$\therefore v^{2} = \frac{6g}{l} \left(\left(\frac{3l}{2} \right)^{2} - \left(\frac{l}{2} \right)^{2} \right)$$

$$v^{2} = \frac{6g}{l} \left(\frac{9l^{2}}{4} - \frac{l^{2}}{4} \right)$$

$$v^{2} = \frac{6g}{l} \times \frac{8l^{2}}{4}$$

$$v^{2} = 12gl$$

When AP = 3l, P's speed is $\sqrt{12gl}$ (or $2\sqrt{3gl}$).

Mechanics 3 Solution Bank

11 a When *P* is in equilibrium:

$$AP = \frac{2}{5} \times 5 = 2 \text{ m}$$

$$BP = 3 \text{ m}$$
Natural lengths: $AP = 1\text{ m}$

$$BP = 1.5 \text{ m}$$

$$A \xrightarrow{[I]{I}} 1 \text{ m} \xrightarrow{[I]{I}} \frac{T_{B}}{I} \xrightarrow{[I]{I}} 1.5 \text{ m}} B$$

$$F = ma$$

$$T_{B} - T_{A} = 0.5 \ddot{x}$$
Hooke's Law : $T = \frac{\lambda x}{l}$

$$AP: \text{ extension } = 1 + x$$

$$T_{A} = \frac{15(1 + x)}{1}$$

$$BP: \text{ extension } = 1.5 - x$$

$$T_{B} = \frac{15(1.5 - x)}{1.5} = 10(1.5 - x)$$

$$\therefore 10(1.5 - x) - 15(1 + x) = 0.5 \ddot{x}$$

$$-25x = 0.5 \ddot{x}$$

$$\ddot{x} = -50x$$

Use the ratio condition to obtain the necessary lengths for the two parts of the string.

∴ S.H.M.

period $=\frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{50}} = \frac{2\pi}{5\sqrt{2}} = \frac{\pi}{5}\sqrt{2}$

b Amplitude = (3 - 2)m = 1 m.